These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 20443609)

  • 1. Characterization of the structures of phosphodiesterase 10 binding with adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate by hybrid quantum mechanical/molecular mechanical calculations.
    Lu H; Goren AC; Zhan CG
    J Phys Chem B; 2010 May; 114(20):7022-8. PubMed ID: 20443609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An update view on the substrate recognition mechanism of phosphodiesterases: a computational study of PDE10 and PDE4 bound with cyclic nucleotides.
    Lau JK; Cheng YK
    Biopolymers; 2012 Nov; 97(11):910-22. PubMed ID: 22899366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative binding free energy calculations of inhibitors to two mutants (Glu46----Ala/Gln) of ribonuclease T1 using molecular dynamics/free energy perturbation approaches.
    Hirono S; Kollman PA
    Protein Eng; 1991 Feb; 4(3):233-43. PubMed ID: 1649996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of a catalytic ligand bridging metal ions in phosphodiesterases 4 and 5 by molecular dynamics simulations and hybrid quantum mechanical/molecular mechanical calculations.
    Xiong Y; Lu HT; Li Y; Yang GF; Zhan CG
    Biophys J; 2006 Sep; 91(5):1858-67. PubMed ID: 16912214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A substrate selectivity and inhibitor design lesson from the PDE10-cAMP crystal structure: a computational study.
    Lau JK; Li XB; Cheng YK
    J Phys Chem B; 2010 Apr; 114(15):5154-60. PubMed ID: 20349929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural insight into substrate specificity of phosphodiesterase 10.
    Wang H; Liu Y; Hou J; Zheng M; Robinson H; Ke H
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5782-7. PubMed ID: 17389385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Nucleotides with a Trinuclear Terbium(III)-Dizinc(II) Complex: Efficient Sensitization of Terbium Luminescence by Guanosine Monophosphate and Application to Real-Time Monitoring of Phosphodiesterase Activity.
    Aulsebrook ML; Starck M; Grace MR; Graham B; Thordarson P; Pal R; Tuck KL
    Inorg Chem; 2019 Jan; 58(1):495-505. PubMed ID: 30561998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-crystal structures of PKG Iβ (92-227) with cGMP and cAMP reveal the molecular details of cyclic-nucleotide binding.
    Kim JJ; Casteel DE; Huang G; Kwon TH; Ren RK; Zwart P; Headd JJ; Brown NG; Chow DC; Palzkill T; Kim C
    PLoS One; 2011 Apr; 6(4):e18413. PubMed ID: 21526164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activation of PDE10 and PDE11 phosphodiesterases.
    Jäger R; Russwurm C; Schwede F; Genieser HG; Koesling D; Russwurm M
    J Biol Chem; 2012 Jan; 287(2):1210-9. PubMed ID: 22105073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of proton wires in the enzyme active site suggests a mechanism of c-di-GMP hydrolysis by the EAL domain phosphodiesterases.
    Grigorenko BL; Knyazeva MA; Nemukhin AV
    Proteins; 2016 Nov; 84(11):1670-1680. PubMed ID: 27479508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly selective binding of organometallic ruthenium ethylenediamine complexes to nucleic acids: novel recognition mechanisms.
    Chen H; Parkinson JA; Morris RE; Sadler PJ
    J Am Chem Soc; 2003 Jan; 125(1):173-86. PubMed ID: 12515520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphodiesterase 10 (PDE10) inhibitors: an updated patent review (2014-present).
    Zagórska A
    Expert Opin Ther Pat; 2020 Feb; 30(2):147-157. PubMed ID: 31874060
    [No Abstract]   [Full Text] [Related]  

  • 13. Structural and biochemical characterization of the catalytic domains of GdpP reveals a unified hydrolysis mechanism for the DHH/DHHA1 phosphodiesterase.
    Wang F; He Q; Su K; Wei T; Xu S; Gu L
    Biochem J; 2018 Jan; 475(1):191-205. PubMed ID: 29203646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of purine nucleotides with cobalt-hexammine, cobalt-pentammine and cobalt-tetrammine cations. Evidence for the rigidity of adenosine and flexibility of guanosine and deoxyguanosine sugar conformations.
    Tajmir-Riahi HA
    J Biomol Struct Dyn; 1991 Jun; 8(6):1169-86. PubMed ID: 1654055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purine 3':5'-cyclic nucleotides with the nucleobase in a syn orientation: cAMP, cGMP and cIMP.
    Řlepokura KA
    Acta Crystallogr C Struct Chem; 2016 Jun; 72(Pt 6):465-79. PubMed ID: 27256694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental reaction pathway and free energy profile for hydrolysis of intracellular second messenger adenosine 3',5'-cyclic monophosphate (cAMP) catalyzed by phosphodiesterase-4.
    Chen X; Zhao X; Xiong Y; Liu J; Zhan CG
    J Phys Chem B; 2011 Oct; 115(42):12208-19. PubMed ID: 21973014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of RNase T1 complexed with the product nucleotide 3'-GMP. Structural evidence for direct interaction of histidine 40 and glutamic acid 58 with the 2'-hydroxyl group of the ribose.
    Gohda K; Oka K; Tomita K; Hakoshima T
    J Biol Chem; 1994 Jul; 269(26):17531-6. PubMed ID: 7912696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of RNase T1 with 3'-guanylic acid and guanosine.
    Zegers I; Haikal AF; Palmer R; Wyns L
    J Biol Chem; 1994 Jan; 269(1):127-33. PubMed ID: 8276784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of Apo and GMP bound hypoxanthine-guanine phosphoribosyltransferase from Legionella pneumophila and the implications in gouty arthritis.
    Zhang N; Gong X; Lu M; Chen X; Qin X; Ge H
    J Struct Biol; 2016 Jun; 194(3):311-6. PubMed ID: 26968365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lead(II)-binding properties of the 5'-monophosphates of adenosine (AMP2-), inosine (IMP2-), and guanosine (GMP2-) in aqueous solution. Evidence for nucleobase-lead(II) interactions.
    Da Costa CP; Sigel H
    Inorg Chem; 2000 Dec; 39(26):5985-93. PubMed ID: 11151499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.