These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 20444207)
1. A set of miRNAs from Brassica napus in response to sulphate deficiency and cadmium stress. Huang SQ; Xiang AL; Che LL; Chen S; Li H; Song JB; Yang ZM Plant Biotechnol J; 2010 Oct; 8(8):887-99. PubMed ID: 20444207 [TBL] [Abstract][Full Text] [Related]
2. Computational identification of novel microRNAs and targets in Brassica napus. Xie FL; Huang SQ; Guo K; Xiang AL; Zhu YY; Nie L; Yang ZM FEBS Lett; 2007 Apr; 581(7):1464-74. PubMed ID: 17367786 [TBL] [Abstract][Full Text] [Related]
3. Heavy metal-regulated new microRNAs from rice. Huang SQ; Peng J; Qiu CX; Yang ZM J Inorg Biochem; 2009 Feb; 103(2):282-7. PubMed ID: 19081140 [TBL] [Abstract][Full Text] [Related]
4. miR395 is involved in detoxification of cadmium in Brassica napus. Zhang LW; Song JB; Shu XX; Zhang Y; Yang ZM J Hazard Mater; 2013 Apr; 250-251():204-11. PubMed ID: 23454459 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA-mRNA expression profiles and their potential role in cadmium stress response in Brassica napus. Fu Y; Mason AS; Zhang Y; Lin B; Xiao M; Fu D; Yu H BMC Plant Biol; 2019 Dec; 19(1):570. PubMed ID: 31856702 [TBL] [Abstract][Full Text] [Related]
6. Cloning and characterization of microRNAs from Brassica napus. Wang L; Wang MB; Tu JX; Helliwell CA; Waterhouse PM; Dennis ES; Fu TD; Fan YL FEBS Lett; 2007 Aug; 581(20):3848-56. PubMed ID: 17659282 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide identification of Brassica napus microRNAs and their targets in response to cadmium. Zhou ZS; Song JB; Yang ZM J Exp Bot; 2012 Jul; 63(12):4597-613. PubMed ID: 22760473 [TBL] [Abstract][Full Text] [Related]
8. Identification and characterization of small RNAs from the phloem of Brassica napus. Buhtz A; Springer F; Chappell L; Baulcombe DC; Kehr J Plant J; 2008 Mar; 53(5):739-49. PubMed ID: 18005229 [TBL] [Abstract][Full Text] [Related]
9. Genome-Wide Identification of MicroRNAs in Response to Cadmium Stress in Oilseed Rape ( Jian H; Yang B; Zhang A; Ma J; Ding Y; Chen Z; Li J; Xu X; Liu L Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29748489 [TBL] [Abstract][Full Text] [Related]
10. Genome-wide identification of Cd-responsive NRAMP transporter genes and analyzing expression of NRAMP 1 mediated by miR167 in Brassica napus. Meng JG; Zhang XD; Tan SK; Zhao KX; Yang ZM Biometals; 2017 Dec; 30(6):917-931. PubMed ID: 28993932 [TBL] [Abstract][Full Text] [Related]
11. Annotation and characterization of Cd-responsive metal transporter genes in rapeseed (Brassica napus). Zhang XD; Meng JG; Zhao KX; Chen X; Yang ZM Biometals; 2018 Feb; 31(1):107-121. PubMed ID: 29250721 [TBL] [Abstract][Full Text] [Related]
12. Identification of Cd-responsive RNA helicase genes and expression of a putative BnRH 24 mediated by miR158 in canola (Brassica napus). Zhang XD; Sun JY; You YY; Song JB; Yang ZM Ecotoxicol Environ Saf; 2018 Aug; 157():159-168. PubMed ID: 29621707 [TBL] [Abstract][Full Text] [Related]
13. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.). Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771 [TBL] [Abstract][Full Text] [Related]
14. Identification of miRNAs that regulate silique development in Brassica napus. Chen L; Chen L; Zhang X; Liu T; Niu S; Wen J; Yi B; Ma C; Tu J; Fu T; Shen J Plant Sci; 2018 Apr; 269():106-117. PubMed ID: 29606207 [TBL] [Abstract][Full Text] [Related]
15. Abiotic stress-associated miRNAs: detection and functional analysis. Jeong DH; German MA; Rymarquis LA; Thatcher SR; Green PJ Methods Mol Biol; 2010; 592():203-30. PubMed ID: 19802598 [TBL] [Abstract][Full Text] [Related]
16. Plant microRNA: a small regulatory molecule with big impact. Zhang B; Pan X; Cobb GP; Anderson TA Dev Biol; 2006 Jan; 289(1):3-16. PubMed ID: 16325172 [TBL] [Abstract][Full Text] [Related]
17. Computational identification of 48 potato microRNAs and their targets. Zhang W; Luo Y; Gong X; Zeng W; Li S Comput Biol Chem; 2009 Feb; 33(1):84-93. PubMed ID: 18723398 [TBL] [Abstract][Full Text] [Related]
18. Molecular characterization of ThIPK2, an inositol polyphosphate kinase gene homolog from Thellungiella halophila, and its heterologous expression to improve abiotic stress tolerance in Brassica napus. Zhu JQ; Zhang JT; Tang RJ; Lv QD; Wang QQ; Yang L; Zhang HX Physiol Plant; 2009 Aug; 136(4):407-25. PubMed ID: 19470090 [TBL] [Abstract][Full Text] [Related]
19. Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Zhou ZS; Huang SQ; Yang ZM Biochem Biophys Res Commun; 2008 Sep; 374(3):538-42. PubMed ID: 18662674 [TBL] [Abstract][Full Text] [Related]
20. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing. Wang Z; Qiao Y; Zhang J; Shi W; Zhang J Gene; 2017 Jul; 619():61-70. PubMed ID: 28377111 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]