BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20444264)

  • 1. Learning gene regulatory networks from only positive and unlabeled data.
    Cerulo L; Elkan C; Ceccarelli M
    BMC Bioinformatics; 2010 May; 11():228. PubMed ID: 20444264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A negative selection heuristic to predict new transcriptional targets.
    Cerulo L; Paduano V; Zoppoli P; Ceccarelli M
    BMC Bioinformatics; 2013; 14 Suppl 1(Suppl 1):S3. PubMed ID: 23368951
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-task learning for the simultaneous reconstruction of the human and mouse gene regulatory networks.
    Mignone P; Pio G; Džeroski S; Ceci M
    Sci Rep; 2020 Dec; 10(1):22295. PubMed ID: 33339842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supervised inference of gene regulatory networks from positive and unlabeled examples.
    Mordelet F; Vert JP
    Methods Mol Biol; 2013; 939():47-58. PubMed ID: 23192540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supervised, semi-supervised and unsupervised inference of gene regulatory networks.
    Maetschke SR; Madhamshettiwar PB; Davis MJ; Ragan MA
    Brief Bioinform; 2014 Mar; 15(2):195-211. PubMed ID: 23698722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data.
    Razaghi-Moghadam Z; Nikoloski Z
    NPJ Syst Biol Appl; 2020 Jun; 6(1):21. PubMed ID: 32606380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-supervised analysis of gene expression profiles for lineage-specific development in the Caenorhabditis elegans embryo.
    Qi Y; Missiuro PE; Kapoor A; Hunter CP; Jaakkola TS; Gifford DK; Ge H
    Bioinformatics; 2006 Jul; 22(14):e417-23. PubMed ID: 16873502
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning a Markov Logic network for supervised gene regulatory network inference.
    Brouard C; Vrain C; Dubois J; Castel D; Debily MA; d'Alché-Buc F
    BMC Bioinformatics; 2013 Sep; 14():273. PubMed ID: 24028533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting transfer learning for the reconstruction of the human gene regulatory network.
    Mignone P; Pio G; D'Elia D; Ceci M
    Bioinformatics; 2020 Mar; 36(5):1553-1561. PubMed ID: 31608946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ensemble positive unlabeled learning for disease gene identification.
    Yang P; Li X; Chua HN; Kwoh CK; Ng SK
    PLoS One; 2014; 9(5):e97079. PubMed ID: 24816822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting gene function using few positive examples and unlabeled ones.
    Chen Y; Li Z; Wang X; Feng J; Hu X
    BMC Genomics; 2010 Nov; 11 Suppl 2(Suppl 2):S11. PubMed ID: 21047378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supervised Learning of Gene Regulatory Networks.
    Razaghi-Moghadam Z; Nikoloski Z
    Curr Protoc Plant Biol; 2020 Jun; 5(2):e20106. PubMed ID: 32207875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of functional bias on supervised learning of a gene network model.
    Lee I; Marcotte EM
    Methods Mol Biol; 2009; 541():463-75. PubMed ID: 19381535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computer-assisted curation of a human regulatory core network from the biological literature.
    Thomas P; Durek P; Solt I; Klinger B; Witzel F; Schulthess P; Mayer Y; Tikk D; Blüthgen N; Leser U
    Bioinformatics; 2015 Apr; 31(8):1258-66. PubMed ID: 25433699
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new multiple regression approach for the construction of genetic regulatory networks.
    Zhang SQ; Ching WK; Tsing NK; Leung HY; Guo D
    Artif Intell Med; 2010; 48(2-3):153-60. PubMed ID: 19963359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring large-scale gene regulatory networks using a low-order constraint-based algorithm.
    Wang M; Augusto Benedito V; Xuechun Zhao P; Udvardi M
    Mol Biosyst; 2010 Jun; 6(6):988-98. PubMed ID: 20485743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Semi-supervised network inference using simulated gene expression dynamics.
    Nguyen P; Braun R
    Bioinformatics; 2018 Apr; 34(7):1148-1156. PubMed ID: 29186340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data.
    Yang B; Xu Y; Maxwell A; Koh W; Gong P; Zhang C
    BMC Syst Biol; 2018 Dec; 12(Suppl 7):115. PubMed ID: 30547796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Approaches for recognizing disease genes based on network.
    Zou Q; Li J; Wang C; Zeng X
    Biomed Res Int; 2014; 2014():416323. PubMed ID: 24707485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inductive inference of gene regulatory network using supervised and semi-supervised graph neural networks.
    Wang J; Ma A; Ma Q; Xu D; Joshi T
    Comput Struct Biotechnol J; 2020; 18():3335-3343. PubMed ID: 33294129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.