BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 20444264)

  • 21. A semi-supervised learning approach to predict synthetic genetic interactions by combining functional and topological properties of functional gene network.
    You ZH; Yin Z; Han K; Huang DS; Zhou X
    BMC Bioinformatics; 2010 Jun; 11():343. PubMed ID: 20573270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SemiBoost: boosting for semi-supervised learning.
    Mallapragada PK; Jin R; Jain AK; Liu Y
    IEEE Trans Pattern Anal Mach Intell; 2009 Nov; 31(11):2000-14. PubMed ID: 19762927
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Network inference algorithms elucidate Nrf2 regulation of mouse lung oxidative stress.
    Taylor RC; Acquaah-Mensah G; Singhal M; Malhotra D; Biswal S
    PLoS Comput Biol; 2008 Aug; 4(8):e1000166. PubMed ID: 18769717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SIRENE: supervised inference of regulatory networks.
    Mordelet F; Vert JP
    Bioinformatics; 2008 Aug; 24(16):i76-82. PubMed ID: 18689844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inferring active regulatory networks from gene expression data using a combination of prior knowledge and enrichment analysis.
    Chouvardas P; Kollias G; Nikolaou C
    BMC Bioinformatics; 2016 Jun; 17 Suppl 5(Suppl 5):181. PubMed ID: 27295045
    [TBL] [Abstract][Full Text] [Related]  

  • 26. EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks.
    Aluru M; Shrivastava H; Chockalingam SP; Shivakumar S; Aluru S
    Bioinformatics; 2022 Feb; 38(5):1312-1319. PubMed ID: 34888624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protein network inference from multiple genomic data: a supervised approach.
    Yamanishi Y; Vert JP; Kanehisa M
    Bioinformatics; 2004 Aug; 20 Suppl 1():i363-70. PubMed ID: 15262821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Exploring semi-supervised variational autoencoders for biomedical relation extraction.
    Zhang Y; Lu Z
    Methods; 2019 Aug; 166():112-119. PubMed ID: 30822516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Positive-unlabeled learning for disease gene identification.
    Yang P; Li XL; Mei JP; Kwoh CK; Ng SK
    Bioinformatics; 2012 Oct; 28(20):2640-7. PubMed ID: 22923290
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inferring gene regulatory networks by integrating static and dynamic data.
    Ferrazzi F; Magni P; Sacchi L; Nuzzo A; Petrovic U; Bellazzi R
    Int J Med Inform; 2007 Dec; 76 Suppl 3():S462-75. PubMed ID: 17825607
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Using directed information to build biologically relevant influence networks.
    Rao A; Hero AO; States DJ; Engel JD
    Comput Syst Bioinformatics Conf; 2007; 6():145-56. PubMed ID: 17951820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SCGRNs: Novel supervised inference of single-cell gene regulatory networks of complex diseases.
    Turki T; Taguchi YH
    Comput Biol Med; 2020 Mar; 118():103656. PubMed ID: 32174324
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional network inference from functional similarity and expression data: a global supervised approach.
    Ambroise J; Robert A; Macq B; Gala JL
    Stat Appl Genet Mol Biol; 2012 Jan; 11(1):Article 2. PubMed ID: 22499684
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Learning an enriched representation from unlabeled data for protein-protein interaction extraction.
    Li Y; Hu X; Lin H; Yang Z
    BMC Bioinformatics; 2010 Apr; 11 Suppl 2(Suppl 2):S7. PubMed ID: 20406505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unsupervised inference of implicit biomedical events using context triggers.
    Chung JW; Yang W; Park JC
    BMC Bioinformatics; 2020 Jan; 21(1):29. PubMed ID: 31992184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reverse engineering highlights potential principles of large gene regulatory network design and learning.
    Carré C; Mas A; Krouk G
    NPJ Syst Biol Appl; 2017; 3():17. PubMed ID: 28649444
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An ensemble learning approach to reverse-engineering transcriptional regulatory networks from time-series gene expression data.
    Ruan J; Deng Y; Perkins EJ; Zhang W
    BMC Genomics; 2009 Jul; 10 Suppl 1(Suppl 1):S8. PubMed ID: 19594885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Node-based learning of differential networks from multi-platform gene expression data.
    Ou-Yang L; Zhang XF; Wu M; Li XL
    Methods; 2017 Oct; 129():41-49. PubMed ID: 28579401
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gene Regulatory Network Inference from Perturbed Time-Series Expression Data via Ordered Dynamical Expansion of Non-Steady State Actors.
    Zamanighomi M; Zamanian M; Kimber M; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1093-1106. PubMed ID: 26701893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.