BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 20444536)

  • 1. Allowance for the effect of protein charge in the characterization of nonideal solute self-association by sedimentation equilibrium.
    Scott DJ; Wills PR; Winzor DJ
    Biophys Chem; 2010 Jul; 149(3):83-91. PubMed ID: 20444536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies of solute self-association by sedimentation equilibrium: allowance for effects of thermodynamic non-ideality beyond the consequences of nearest-neighbor interactions.
    Wills PR; Winzor DJ
    Biophys Chem; 2001 Jul; 91(3):253-62. PubMed ID: 11551437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of methods for characterizing nonideal solute self-association by sedimentation equilibrium.
    Scott DJ; Winzor DJ
    Biophys J; 2009 Aug; 97(3):886-96. PubMed ID: 19651047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Allowance for effects of thermodynamic nonideality in sedimentation equilibrium distributions reflecting protein dimerization.
    Wills PR; Scott DJ; Winzor DJ
    Anal Biochem; 2012 Mar; 422(1):28-32. PubMed ID: 22230287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of thermodynamic non-ideality in sedimentation equilibrium experiments on proteins.
    Wills PR; Hall DR; Winzor DJ
    Biophys Chem; 2000 May; 84(3):217-25. PubMed ID: 10852309
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of weak protein dimerization by direct analysis of sedimentation equilibrium distributions: the INVEQ approach.
    Winzor DJ; Wills PR
    Anal Biochem; 2007 Sep; 368(2):168-77. PubMed ID: 17540333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the thermodynamic non-ideality of proteins by sedimentation equilibrium experiments.
    Behlke J; Ristau O
    Biophys Chem; 1999 Jan; 76(1):13-23. PubMed ID: 10028229
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of protein self-association under conditions of the thermodynamic non-ideality.
    Behlke J; Ristau O
    Biophys Chem; 2000 Sep; 87(1):1-13. PubMed ID: 11036965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of thermodynamic non-ideality in terms of protein solvation.
    Winzor DJ; Carrington LE; Harding SE
    Biophys Chem; 2001 Nov; 93(2-3):231-40. PubMed ID: 11804728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allowance for thermodynamic non-ideality in the characterization of protein self-association by frontal exclusion chromatography: hemoglobin revisited.
    Winzor DJ; Wills PR
    Biophys Chem; 2003 May; 104(1):345-59. PubMed ID: 12834853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The indefinite self-association of lysozyme: consideration of composition-dependent activity coefficients.
    Wills PR; Nichol LW; Siezen RJ
    Biophys Chem; 1980 Feb; 11(1):71-82. PubMed ID: 7188865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequivalence of second virial coefficients from sedimentation equilibrium and static light scattering studies of protein solutions.
    Winzor DJ; Deszczynski M; Harding SE; Wills PR
    Biophys Chem; 2007 Jun; 128(1):46-55. PubMed ID: 17382457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of temperature on the self-assembly of the Escherichia coli ClpA molecular chaperone.
    Veronese PK; Lucius AL
    Biochemistry; 2010 Nov; 49(45):9820-9. PubMed ID: 20964444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On the analysis of protein self-association by sedimentation velocity analytical ultracentrifugation.
    Schuck P
    Anal Biochem; 2003 Sep; 320(1):104-24. PubMed ID: 12895474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of macromolecular heterogeneity by equilibrium sedimentation techniques.
    Xu Y
    Biophys Chem; 2004 Mar; 108(1-3):141-63. PubMed ID: 15043927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sedimentation equilibrium in a solution containing an arbitrary number of solute species at arbitrary concentrations: theory and application to concentrated solutions of ribonuclease.
    Zorrilla S; Jiménez M; Lillo P; Rivas G; Minton AP
    Biophys Chem; 2004 Mar; 108(1-3):89-100. PubMed ID: 15043923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Gilbert theory for self-association in sedimentation velocity experiments: a guide to evaluate best fitting models.
    Bishop GR; Correia JJ
    Eur Biophys J; 2023 Jul; 52(4-5):281-292. PubMed ID: 36881128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of molecular crowding on protein self-association: a potential source of error in sedimentation coefficients obtained by zonal ultracentrifugation in a sucrose gradient.
    Cann JR; Coombs RO; Howlett GJ; Jacobsen MP; Winzor DJ
    Biochemistry; 1994 Aug; 33(33):10185-90. PubMed ID: 8060984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic analysis of weak protein interactions using sedimentation equilibrium.
    Sergeev YV; Dolinska MB; Wingfield PT
    Curr Protoc Protein Sci; 2014 Aug; 77():20.13.1-20.13.15. PubMed ID: 25081741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-association studies on the EphB2 receptor SAM domain using analytical ultracentrifugation.
    Behlke J; Labudde D; Ristau O
    Eur Biophys J; 2001 Oct; 30(6):411-5. PubMed ID: 11718293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.