These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 20444546)

  • 1. Use of liming in the remediation of soils polluted by sulphide oxidation: a leaching-column study.
    Simón M; Diez M; González V; García I; Martín F; de Haro S
    J Hazard Mater; 2010 Aug; 180(1-3):241-6. PubMed ID: 20444546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of liming in controlling the mobility of lead in shooting range soils as assessed by different experimental approaches.
    Levonmäki M; Hartikainen H
    Sci Total Environ; 2007 Dec; 388(1-3):1-7. PubMed ID: 17900662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of limestone grains and acidic solutions from the oxidation of pyrite tailings.
    Simón M; Martín F; García I; Bouza P; Dorronsoro C; Aguilar J
    Environ Pollut; 2005 May; 135(1):65-72. PubMed ID: 15701393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reclamation of a mine contaminated soil using biologically reactive organic matrices.
    Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Duarte E; Cunha-Queda AC; Vallini G
    Waste Manag Res; 2009 Mar; 27(2):101-11. PubMed ID: 19244409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ chemical fixation of arsenic-contaminated soils: an experimental study.
    Yang L; Donahoe RJ; Redwine JC
    Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions.
    de Livera J; McLaughlin MJ; Hettiarachchi GM; Kirby JK; Beak DG
    Sci Total Environ; 2011 Mar; 409(8):1489-97. PubMed ID: 21277005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment of marsh soils with heavy metals by effect of anthropic pollution.
    Vega FA; Covelo EF; Cerqueira B; Andrade ML
    J Hazard Mater; 2009 Oct; 170(2-3):1056-63. PubMed ID: 19525065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remediation of Pb-contaminated soils by washing with hydrochloric acid and subsequent immobilization with calcite and allophanic soil.
    Isoyama M; Wada S
    J Hazard Mater; 2007 May; 143(3):636-42. PubMed ID: 17267106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural remediation of an unremediated soil twelve years after a mine accident: trace element mobility and plant composition.
    Burgos P; Madejón P; Madejón E; Girón I; Cabrera F; Murillo JM
    J Environ Manage; 2013 Jan; 114():36-45. PubMed ID: 23201603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil pollution by a pyrite mine spill in Spain: evolution in time.
    Aguilar J; Dorronsoro C; Fernández E; Fernández J; García I; Martín F; Simón M
    Environ Pollut; 2004 Dec; 132(3):395-401. PubMed ID: 15325455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of chemical, biochemical and ecotoxicological aspects in a mine soil amended with sludge of either urban or industrial origin.
    Alvarenga P; Palma P; Gonçalves AP; Baião N; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC
    Chemosphere; 2008 Aug; 72(11):1774-81. PubMed ID: 18547605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Migration of trace elements from pyrite tailings in carbonate soils.
    Dorronsoro C; Martin F; Ortiz I; García I; Simón M; Fernández E; Aguilar J; Fernández J
    J Environ Qual; 2002; 31(3):829-35. PubMed ID: 12026086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of readily dispersible colloid on adsorption and transport of Zn, Cu, and Pb in soils.
    Zhang M; Li W; Yang Y; Chen B; Song F
    Environ Int; 2005 Aug; 31(6):840-4. PubMed ID: 16024081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The interaction of heavy metals with urban soils: sorption behaviour of Cd, Cu, Cr, Pb and Zn with a typical mixed brownfield deposit.
    Markiewicz-Patkowska J; Hursthouse A; Przybyla-Kij H
    Environ Int; 2005 May; 31(4):513-21. PubMed ID: 15788192
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reduction of Pb and Zn bioavailable forms in metal polluted soils due to paper mill sludge addition. Effects on Pb and Zn transferability to barley.
    Battaglia A; Calace N; Nardi E; Petronio BM; Pietroletti M
    Bioresour Technol; 2007 Nov; 98(16):2993-9. PubMed ID: 17126014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate-induced lead immobilization from different lead minerals in soils under varying pH conditions.
    Cao X; Ma LQ; Singh SP; Zhou Q
    Environ Pollut; 2008 Mar; 152(1):184-92. PubMed ID: 17601642
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.