These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 20444566)

  • 1. Functional MRI and multivariate autoregressive models.
    Rogers BP; Katwal SB; Morgan VL; Asplund CL; Gore JC
    Magn Reson Imaging; 2010 Oct; 28(8):1058-65. PubMed ID: 20444566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GMAC: a Matlab toolbox for spectral Granger causality analysis of fMRI data.
    Tana MG; Sclocco R; Bianchi AM
    Comput Biol Med; 2012 Oct; 42(10):943-56. PubMed ID: 22925560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Feb; 278():87-100. PubMed ID: 28065836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measuring relative timings of brain activities using fMRI.
    Katwal SB; Gore JC; Gatenby JC; Rogers BP
    Neuroimage; 2013 Feb; 66():436-48. PubMed ID: 23110880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling.
    Seth AK; Chorley P; Barnett LC
    Neuroimage; 2013 Jan; 65():540-55. PubMed ID: 23036449
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO.
    Tang W; Bressler SL; Sylvester CM; Shulman GL; Corbetta M
    PLoS Comput Biol; 2012; 8(5):e1002513. PubMed ID: 22654651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hemodynamic variability on Granger causality analysis of fMRI.
    Deshpande G; Sathian K; Hu X
    Neuroimage; 2010 Sep; 52(3):884-96. PubMed ID: 20004248
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conditional Granger causality model approach for group analysis in functional magnetic resonance imaging.
    Zhou Z; Wang X; Klahr NJ; Liu W; Arias D; Liu H; von Deneen KM; Wen Y; Lu Z; Xu D; Liu Y
    Magn Reson Imaging; 2011 Apr; 29(3):418-33. PubMed ID: 21232892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG.
    Astolfi L; Cincotti F; Mattia D; Salinari S; Babiloni C; Basilisco A; Rossini PM; Ding L; Ni Y; He B; Marciani MG; Babiloni F
    Magn Reson Imaging; 2004 Dec; 22(10):1457-70. PubMed ID: 15707795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pattern-based Granger causality mapping in FMRI.
    Kim E; Kim DS; Ahmad F; Park H
    Brain Connect; 2013; 3(6):569-77. PubMed ID: 24059863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extended time-frequency Granger causality for evaluation of functional network connectivity in event-related FMRI data.
    Havlicek M; Jan J; Calhoun VD; Brazdil M
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4440-3. PubMed ID: 19963833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analyzing the connectivity between regions of interest: an approach based on cluster Granger causality for fMRI data analysis.
    Sato JR; Fujita A; Cardoso EF; Thomaz CE; Brammer MJ; Amaro E
    Neuroimage; 2010 Oct; 52(4):1444-55. PubMed ID: 20472076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal HRF and smoothing parameters for fMRI time series within an autoregressive modeling framework.
    Galka A; Siniatchkin M; Stephani U; Groening K; Wolff S; Bosch-Bayard J; Ozaki T
    J Integr Neurosci; 2010 Dec; 9(4):429-52. PubMed ID: 21213413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kernel Granger causality mapping effective connectivity on FMRI data.
    Liao W; Marinazzo D; Pan Z; Gong Q; Chen H
    IEEE Trans Med Imaging; 2009 Nov; 28(11):1825-35. PubMed ID: 19709972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions.
    Kim J; Horwitz B
    Magn Reson Imaging; 2008 Jun; 26(5):583-93. PubMed ID: 18191524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically informed dynamic causal modeling of fMRI data.
    Havlicek M; Roebroeck A; Friston K; Gardumi A; Ivanov D; Uludag K
    Neuroimage; 2015 Nov; 122():355-72. PubMed ID: 26254113
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The equivalence of linear Gaussian connectivity techniques.
    Davey CE; Grayden DB; Gavrilescu M; Egan GF; Johnston LA
    Hum Brain Mapp; 2013 Sep; 34(9):1999-2014. PubMed ID: 22611015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is Granger causality a viable technique for analyzing fMRI data?
    Wen X; Rangarajan G; Ding M
    PLoS One; 2013; 8(7):e67428. PubMed ID: 23861763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigating effective brain connectivity from fMRI data: past findings and current issues with reference to Granger causality analysis.
    Deshpande G; Hu X
    Brain Connect; 2012; 2(5):235-45. PubMed ID: 23016794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of intra- and inter-subject variability of hemodynamic responses on group level Granger causality analyses.
    Schippers MB; Renken R; Keysers C
    Neuroimage; 2011 Jul; 57(1):22-36. PubMed ID: 21316469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.