BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 20444700)

  • 1. Nucleosome interaction surface of linker histone H1c is distinct from that of H1(0).
    George EM; Izard T; Anderson SD; Brown DT
    J Biol Chem; 2010 Jul; 285(27):20891-6. PubMed ID: 20444700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c.
    Vyas P; Brown DT
    J Biol Chem; 2012 Apr; 287(15):11778-87. PubMed ID: 22334665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the interaction surface of linker histone H1(0) with the nucleosome of native chromatin in vivo.
    Brown DT; Izard T; Misteli T
    Nat Struct Mol Biol; 2006 Mar; 13(3):250-5. PubMed ID: 16462749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Small Number of Residues Can Determine if Linker Histones Are Bound On or Off Dyad in the Chromatosome.
    Zhou BR; Feng H; Ghirlando R; Li S; Schwieters CD; Bai Y
    J Mol Biol; 2016 Oct; 428(20):3948-3959. PubMed ID: 27558112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A putative DNA binding surface in the globular domain of a linker histone is not essential for specific binding to the nucleosome.
    Hayes JJ; Kaplan R; Ura K; Pruss D; Wolffe A
    J Biol Chem; 1996 Oct; 271(42):25817-22. PubMed ID: 8824211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the histone H1-nucleosome complex.
    Zhou BR; Feng H; Kato H; Dai L; Yang Y; Zhou Y; Bai Y
    Proc Natl Acad Sci U S A; 2013 Nov; 110(48):19390-5. PubMed ID: 24218562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex of linker histone H5 with the nucleosome and its implications for chromatin packing.
    Fan L; Roberts VA
    Proc Natl Acad Sci U S A; 2006 May; 103(22):8384-9. PubMed ID: 16717183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Position and orientation of the globular domain of linker histone H5 on the nucleosome.
    Zhou YB; Gerchman SE; Ramakrishnan V; Travers A; Muyldermans S
    Nature; 1998 Sep; 395(6700):402-5. PubMed ID: 9759733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HMGN1 and 2 remodel core and linker histone tail domains within chromatin.
    Murphy KJ; Cutter AR; Fang H; Postnikov YV; Bustin M; Hayes JJ
    Nucleic Acids Res; 2017 Sep; 45(17):9917-9930. PubMed ID: 28973435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Site-directed mutagenesis studies on the binding of the globular domain of linker histone H5 to the nucleosome.
    Buckle RS; Maman JD; Allan J
    J Mol Biol; 1992 Feb; 223(3):651-9. PubMed ID: 1542112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-base resolution mapping of H1-nucleosome interactions and 3D organization of the nucleosome.
    Syed SH; Goutte-Gattat D; Becker N; Meyer S; Shukla MS; Hayes JJ; Everaers R; Angelov D; Bednar J; Dimitrov S
    Proc Natl Acad Sci U S A; 2010 May; 107(21):9620-5. PubMed ID: 20457934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
    Wu H; Dalal Y; Papoian GA
    J Mol Biol; 2021 Mar; 433(6):166881. PubMed ID: 33617899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleosome linker DNA contacts and induces specific folding of the intrinsically disordered H1 carboxyl-terminal domain.
    Caterino TL; Fang H; Hayes JJ
    Mol Cell Biol; 2011 Jun; 31(11):2341-8. PubMed ID: 21464206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nucleosome-free region locally abrogates histone H1-dependent restriction of linker DNA accessibility in chromatin.
    Mishra LN; Hayes JJ
    J Biol Chem; 2018 Dec; 293(50):19191-19200. PubMed ID: 30373774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Mechanisms of Nucleosome Recognition by Linker Histones.
    Zhou BR; Jiang J; Feng H; Ghirlando R; Xiao TS; Bai Y
    Mol Cell; 2015 Aug; 59(4):628-38. PubMed ID: 26212454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of the chromatosome particle.
    Bharath MM; Chandra NR; Rao MR
    Nucleic Acids Res; 2003 Jul; 31(14):4264-74. PubMed ID: 12853645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of H1 histone variant overexpression on chromatin structure.
    Gunjan A; Alexander BT; Sittman DB; Brown DT
    J Biol Chem; 1999 Dec; 274(53):37950-6. PubMed ID: 10608862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.