BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 20444905)

  • 1. What determines the complex kinetics of stomatal conductance under blueless PAR in Festuca arundinacea? Subsequent effects on leaf transpiration.
    Barillot R; Frak E; Combes D; Durand JL; Escobar-Gutiérrez AJ
    J Exp Bot; 2010 Jun; 61(10):2795-806. PubMed ID: 20444905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf elongation response to blue light is mediated by stomatal-induced variations in transpiration in Festuca arundinacea.
    Barillot R; De Swaef T; Combes D; Durand JL; Escobar-Gutiérrez AJ; Martre P; Perrot C; Roy E; Frak E
    J Exp Bot; 2021 Mar; 72(7):2642-2656. PubMed ID: 33326568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Steady-state stomatal responses of C
    Zhen S; Bugbee B
    Plant Cell Environ; 2020 Dec; 43(12):3020-3032. PubMed ID: 32929764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nocturnal and daytime stomatal conductance respond to root-zone temperature in 'Shiraz' grapevines.
    Rogiers SY; Clarke SJ
    Ann Bot; 2013 Mar; 111(3):433-44. PubMed ID: 23293018
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species.
    Xiong D; Douthe C; Flexas J
    Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leaf-level gas-exchange uniformity and photosynthetic capacity among loblolly pine (Pinus taeda L.) genotypes of contrasting inherent genetic variation.
    Aspinwall MJ; King JS; McKeand SE; Domec JC
    Tree Physiol; 2011 Jan; 31(1):78-91. PubMed ID: 21389004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency.
    McAusland L; Vialet-Chabrand S; Davey P; Baker NR; Brendel O; Lawson T
    New Phytol; 2016 Sep; 211(4):1209-20. PubMed ID: 27214387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue light effects on rose photosynthesis and photomorphogenesis.
    Abidi F; Girault T; Douillet O; Guillemain G; Sintes G; Laffaire M; Ben Ahmed H; Smiti S; Huché-Thélier L; Leduc N
    Plant Biol (Stuttg); 2013 Jan; 15(1):67-74. PubMed ID: 22686322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-ordination of hydraulic and stomatal conductances across light qualities in cucumber leaves.
    Savvides A; Fanourakis D; van Ieperen W
    J Exp Bot; 2012 Feb; 63(3):1135-43. PubMed ID: 22121201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Will intra-specific differences in transpiration efficiency in wheat be maintained in a high CO₂ world? A FACE study.
    Tausz-Posch S; Norton RM; Seneweera S; Fitzgerald GJ; Tausz M
    Physiol Plant; 2013 Jun; 148(2):232-45. PubMed ID: 23035842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased stomatal conductance induces rapid changes to photosynthetic rate in response to naturally fluctuating light conditions in rice.
    Yamori W; Kusumi K; Iba K; Terashima I
    Plant Cell Environ; 2020 May; 43(5):1230-1240. PubMed ID: 31990076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physiological strategies of co-occurring oaks in a water- and nutrient-limited ecosystem.
    Renninger HJ; Carlo N; Clark KL; Schäfer KV
    Tree Physiol; 2014 Feb; 34(2):159-73. PubMed ID: 24488856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic variation in circadian regulation of nocturnal stomatal conductance enhances carbon assimilation and growth.
    Resco de Dios V; Loik ME; Smith R; Aspinwall MJ; Tissue DT
    Plant Cell Environ; 2016 Jan; 39(1):3-11. PubMed ID: 26147129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phototropins but not cryptochromes mediate the blue light-specific promotion of stomatal conductance, while both enhance photosynthesis and transpiration under full sunlight.
    Boccalandro HE; Giordano CV; Ploschuk EL; Piccoli PN; Bottini R; Casal JJ
    Plant Physiol; 2012 Mar; 158(3):1475-84. PubMed ID: 22147516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.
    Locke AM; Sack L; Bernacchi CJ; Ort DR
    Ann Bot; 2013 Sep; 112(5):911-8. PubMed ID: 23864003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A steady-state stomatal model of balanced leaf gas exchange, hydraulics and maximal source-sink flux.
    Hölttä T; Lintunen A; Chan T; Mäkelä A; Nikinmaa E
    Tree Physiol; 2017 Jul; 37(7):851-868. PubMed ID: 28338800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of photosynthesis to the red light response of stomatal conductance.
    Baroli I; Price GD; Badger MR; von Caemmerer S
    Plant Physiol; 2008 Feb; 146(2):737-47. PubMed ID: 18065555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reductions in mesophyll and guard cell photosynthesis impact on the control of stomatal responses to light and CO2.
    Lawson T; Lefebvre S; Baker NR; Morison JI; Raines CA
    J Exp Bot; 2008; 59(13):3609-19. PubMed ID: 18836187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomatal kinetics and photosynthetic gas exchange along a continuum of isohydric to anisohydric regulation of plant water status.
    Meinzer FC; Smith DD; Woodruff DR; Marias DE; McCulloh KA; Howard AR; Magedman AL
    Plant Cell Environ; 2017 Aug; 40(8):1618-1628. PubMed ID: 28426140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maturation of Atriplex halimus L. leaves involves changes in the molecular regulation of stomatal conductance under high evaporative demand and high but not low soil water content.
    Nada RM; Khedr AHA; Serag MS; El-Qashlan NR; Abogadallah GM
    Planta; 2018 Oct; 248(4):795-812. PubMed ID: 29923138
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.