These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

382 related articles for article (PubMed ID: 20445067)

  • 1. Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum.
    Eickhoff SB; Jbabdi S; Caspers S; Laird AR; Fox PT; Zilles K; Behrens TE
    J Neurosci; 2010 May; 30(18):6409-21. PubMed ID: 20445067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The somatotopic organization of cytoarchitectonic areas on the human parietal operculum.
    Eickhoff SB; Grefkes C; Zilles K; Fink GR
    Cereb Cortex; 2007 Aug; 17(8):1800-11. PubMed ID: 17032710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic fibre tract analysis of cytoarchitectonically defined human inferior parietal lobule areas reveals similarities to macaques.
    Caspers S; Eickhoff SB; Rick T; von Kapri A; Kuhlen T; Huang R; Shah NJ; Zilles K
    Neuroimage; 2011 Sep; 58(2):362-80. PubMed ID: 21718787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results.
    Eickhoff SB; Amunts K; Mohlberg H; Zilles K
    Cereb Cortex; 2006 Feb; 16(2):268-79. PubMed ID: 15888606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tractography-based parcellation of the human left inferior parietal lobule.
    Wang J; Fan L; Zhang Y; Liu Y; Jiang D; Zhang Y; Yu C; Jiang T
    Neuroimage; 2012 Nov; 63(2):641-52. PubMed ID: 22846658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity.
    Mars RB; Jbabdi S; Sallet J; O'Reilly JX; Croxson PL; Olivier E; Noonan MP; Bergmann C; Mitchell AS; Baxter MG; Behrens TE; Johansen-Berg H; Tomassini V; Miller KL; Rushworth MF
    J Neurosci; 2011 Mar; 31(11):4087-100. PubMed ID: 21411650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions.
    Eickhoff SB; Schleicher A; Zilles K; Amunts K
    Cereb Cortex; 2006 Feb; 16(2):254-67. PubMed ID: 15888607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Broca's region: linking human brain functional connectivity data and non-human primate tracing anatomy studies.
    Kelly C; Uddin LQ; Shehzad Z; Margulies DS; Castellanos FX; Milham MP; Petrides M
    Eur J Neurosci; 2010 Aug; 32(3):383-98. PubMed ID: 20662902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connectivity-based parcellation of the macaque frontal cortex, and its relation with the cytoarchitectonic distribution described in current atlases.
    Cerliani L; D'Arceuil H; Thiebaut de Schotten M
    Brain Struct Funct; 2017 Apr; 222(3):1331-1349. PubMed ID: 27469273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Segregation of visceral and somatosensory afferents: an fMRI and cytoarchitectonic mapping study.
    Eickhoff SB; Lotze M; Wietek B; Amunts K; Enck P; Zilles K
    Neuroimage; 2006 Jul; 31(3):1004-14. PubMed ID: 16529950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarchitecture and connectivity of the parietal lobe.
    Caspers S; Zilles K
    Handb Clin Neurol; 2018; 151():53-72. PubMed ID: 29519479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct parietal and temporal connectivity profiles of ventrolateral frontal areas involved in language production.
    Margulies DS; Petrides M
    J Neurosci; 2013 Oct; 33(42):16846-52. PubMed ID: 24133284
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties.
    Hoshi E; Tanji J
    Curr Opin Neurobiol; 2007 Apr; 17(2):234-42. PubMed ID: 17317152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying human parieto-insular vestibular cortex using fMRI and cytoarchitectonic mapping.
    Eickhoff SB; Weiss PH; Amunts K; Fink GR; Zilles K
    Hum Brain Mapp; 2006 Jul; 27(7):611-21. PubMed ID: 16281284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest.
    van de Ven VG; Formisano E; Prvulovic D; Roeder CH; Linden DE
    Hum Brain Mapp; 2004 Jul; 22(3):165-78. PubMed ID: 15195284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short frontal lobe connections of the human brain.
    Catani M; Dell'acqua F; Vergani F; Malik F; Hodge H; Roy P; Valabregue R; Thiebaut de Schotten M
    Cortex; 2012 Feb; 48(2):273-91. PubMed ID: 22209688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Architecture of the Parieto-Frontal Network Underlying Cognitive-Motor Control in Monkeys.
    Caminiti R; Borra E; Visco-Comandini F; Battaglia-Mayer A; Averbeck BB; Luppino G
    eNeuro; 2017; 4(1):. PubMed ID: 28275714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI.
    Ruschel M; Knösche TR; Friederici AD; Turner R; Geyer S; Anwander A
    Cereb Cortex; 2014 Sep; 24(9):2436-48. PubMed ID: 23599164
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different Roles of Direct and Indirect Frontoparietal Pathways for Individual Working Memory Capacity.
    Ekman M; Fiebach CJ; Melzer C; Tittgemeyer M; Derrfuss J
    J Neurosci; 2016 Mar; 36(10):2894-903. PubMed ID: 26961945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Connectivity-based parcellation of the human frontal pole with diffusion tensor imaging.
    Liu H; Qin W; Li W; Fan L; Wang J; Jiang T; Yu C
    J Neurosci; 2013 Apr; 33(16):6782-90. PubMed ID: 23595737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.