These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. TGF-β1 stimulates mitochondrial oxidative phosphorylation and generation of reactive oxygen species in cultured mouse podocytes, mediated in part by the mTOR pathway. Abe Y; Sakairi T; Beeson C; Kopp JB Am J Physiol Renal Physiol; 2013 Nov; 305(10):F1477-90. PubMed ID: 24049142 [TBL] [Abstract][Full Text] [Related]
3. Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling. Zhdanov AV; Waters AH; Golubeva AV; Dmitriev RI; Papkovsky DB Biochim Biophys Acta; 2014 Jan; 1837(1):51-62. PubMed ID: 23891695 [TBL] [Abstract][Full Text] [Related]
4. Measurement of Oxygen Consumption Rate (OCR) and Extracellular Acidification Rate (ECAR) in Culture Cells for Assessment of the Energy Metabolism. Plitzko B; Loesgen S Bio Protoc; 2018 May; 8(10):e2850. PubMed ID: 34285967 [TBL] [Abstract][Full Text] [Related]
5. Modulation of mitochondrial bioenergetics in a skeletal muscle cell line model of mitochondrial toxicity. Dott W; Mistry P; Wright J; Cain K; Herbert KE Redox Biol; 2014; 2():224-33. PubMed ID: 24494197 [TBL] [Abstract][Full Text] [Related]
6. Impact of high glucose and transforming growth factor-β on bioenergetic profiles in podocytes. Stieger N; Worthmann K; Teng B; Engeli S; Das AM; Haller H; Schiffer M Metabolism; 2012 Aug; 61(8):1073-86. PubMed ID: 22365040 [TBL] [Abstract][Full Text] [Related]
7. Using Seahorse Machine to Measure OCR and ECAR in Cancer Cells. Zhang J; Zhang Q Methods Mol Biol; 2019; 1928():353-363. PubMed ID: 30725464 [TBL] [Abstract][Full Text] [Related]
8. Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness. Smolina N; Bruton J; Kostareva A; Sejersen T Methods Mol Biol; 2017; 1601():79-87. PubMed ID: 28470519 [TBL] [Abstract][Full Text] [Related]
9. Quercetin exerts an inhibitory effect on cellular bioenergetics of the B164A5 murine melanoma cell line. Sturza A; Pavel I; Ancușa S; Danciu C; Dehelean C; Duicu O; Muntean D Mol Cell Biochem; 2018 Oct; 447(1-2):103-109. PubMed ID: 29380243 [TBL] [Abstract][Full Text] [Related]
10. Glycolytic reprogramming in macrophages and MSCs during inflammation. Li X; Shen H; Zhang M; Teissier V; Huang EE; Gao Q; Tsubosaka M; Toya M; Kushioka J; Maduka CV; Contag CH; Chow SK; Zhang N; Goodman SB Front Immunol; 2023; 14():1199751. PubMed ID: 37675119 [TBL] [Abstract][Full Text] [Related]
11. Cell bioenergetics in Leghorn male hepatoma cells and immortalized chicken liver cells in response to 4-hydroxy 2-nonenal-induced oxidative stress. Piekarski AL; Kong BW; Lassiter K; Hargis BM; Bottje WG Poult Sci; 2014 Nov; 93(11):2870-7. PubMed ID: 25143593 [TBL] [Abstract][Full Text] [Related]
12. Assessment of Cellular Bioenergetics in Mouse Hematopoietic Stem and Primitive Progenitor Cells using the Extracellular Flux Analyzer. Kumar S; Jones M; Li Q; Lombard DB J Vis Exp; 2021 Sep; (175):. PubMed ID: 34633378 [TBL] [Abstract][Full Text] [Related]
13. Quantifying intracellular rates of glycolytic and oxidative ATP production and consumption using extracellular flux measurements. Mookerjee SA; Gerencser AA; Nicholls DG; Brand MD J Biol Chem; 2017 Apr; 292(17):7189-7207. PubMed ID: 28270511 [TBL] [Abstract][Full Text] [Related]
14. Development of a high-throughput method for real-time assessment of cellular metabolism in intact long skeletal muscle fibre bundles. Li R; Steyn FJ; Stout MB; Lee K; Cully TR; Calderón JC; Ngo ST J Physiol; 2016 Dec; 594(24):7197-7213. PubMed ID: 27619319 [TBL] [Abstract][Full Text] [Related]
15. Bioenergetic analysis of ovarian cancer cell lines: profiling of histological subtypes and identification of a mitochondria-defective cell line. Dier U; Shin DH; Hemachandra LP; Uusitalo LM; Hempel N PLoS One; 2014; 9(5):e98479. PubMed ID: 24858344 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of autophagy and glycolysis by nitric oxide during hypoxia-reoxygenation impairs cellular bioenergetics and promotes cell death in primary neurons. Benavides GA; Liang Q; Dodson M; Darley-Usmar V; Zhang J Free Radic Biol Med; 2013 Dec; 65():1215-1228. PubMed ID: 24056030 [TBL] [Abstract][Full Text] [Related]
18. Higher Reliance on Glycolysis Limits Glycolytic Responsiveness in Degenerating Glaucomatous Optic Nerve. Jassim AH; Coughlin L; Harun-Or-Rashid M; Kang PT; Chen YR; Inman DM Mol Neurobiol; 2019 Oct; 56(10):7097-7112. PubMed ID: 30980229 [TBL] [Abstract][Full Text] [Related]
19. Differential effects of respiratory inhibitors on glycolysis in proximal tubules. Dickman KG; Mandel LJ Am J Physiol; 1990 Jun; 258(6 Pt 2):F1608-15. PubMed ID: 2163215 [TBL] [Abstract][Full Text] [Related]
20. Mitochondrial and Glycolytic Capacity of Peripheral Blood Mononuclear Cells Isolated From Diverse Poultry Genetic Lines: Optimization and Assessment. Meyer MM; Lamont SJ; Bobeck EA Front Vet Sci; 2021; 8():815878. PubMed ID: 35155649 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]