BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 20445323)

  • 1. Chlorella vulgaris aldehyde reductase is capable of functioning as ferric reductase and of driving the fenton reaction in the presence of free flavin.
    Sato J; Takeda K; Nishiyama R; Fusayama K; Arai T; Sato T; Watanabe T; Abe A; Nakagawa J; Kawasaki S; Niimura Y
    Biosci Biotechnol Biochem; 2010; 74(4):854-7. PubMed ID: 20445323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Escherichia coli ferredoxin-NADP+ reductase and oxygen-insensitive nitroreductase are capable of functioning as ferric reductase and of driving the Fenton reaction.
    Takeda K; Sato J; Goto K; Fujita T; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2010 Aug; 23(4):727-37. PubMed ID: 20407804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synechocystis ferredoxin-NADP(+) oxidoreductase is capable of functioning as ferric reductase and of driving the Fenton reaction in the absence or presence of free flavin.
    Sato J; Takeda K; Nishiyama R; Watanabe T; Abo M; Yoshimura E; Nakagawa J; Abe A; Kawasaki S; Niimura Y
    Biometals; 2011 Apr; 24(2):311-21. PubMed ID: 21221720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Initial-rate kinetics of the flavin reductase reaction catalysed by human biliverdin-IXbeta reductase (BVR-B).
    Cunningham O; Gore MG; Mantle TJ
    Biochem J; 2000 Jan; 345 Pt 2(Pt 2):393-9. PubMed ID: 10620517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities.
    Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG
    Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction.
    Takeda K; Iizuka M; Watanabe T; Nakagawa J; Kawasaki S; Niimura Y
    FEBS J; 2007 Mar; 274(5):1318-27. PubMed ID: 17298443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free flavins accelerate release of ferrous iron from iron storage proteins by both free flavin-dependent and -independent ferric reductases in Escherichia coli.
    Satoh J; Kimata S; Nakamoto S; Ishii T; Tanaka E; Yumoto S; Takeda K; Yoshimura E; Kanesaki Y; Ishige T; Tanaka K; Abe A; Kawasaki S; Niimura Y
    J Gen Appl Microbiol; 2020 Jan; 65(6):308-315. PubMed ID: 31281172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostable flavin reductase that couples with dibenzothiophene monooxygenase, from thermophilic Bacillus sp. DSM411: purification, characterization, and gene cloning.
    Ohshiro T; Yamada H; Shimoda T; Matsubara T; Izumi Y
    Biosci Biotechnol Biochem; 2004 Aug; 68(8):1712-21. PubMed ID: 15322355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reaction of the NAD(P)H:flavin oxidoreductase from Escherichia coli with NADPH and riboflavin: identification of intermediates.
    Nivière V; Vanoni MA; Zanetti G; Fontecave M
    Biochemistry; 1998 Aug; 37(34):11879-87. PubMed ID: 9718311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol modification and site directed mutagenesis of the flavin domain of spinach NADH:nitrate reductase.
    Trimboli AJ; Quinn GB; Smith ET; Barber MJ
    Arch Biochem Biophys; 1996 Jul; 331(1):117-26. PubMed ID: 8660690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of a role for a mouse sperm surface aldo-keto reductase (AKR1B7) and its human analogue in the detoxification of the reactive aldehyde, acrolein.
    Jagoe WN; Howe K; O'Brien SC; Carroll J
    Andrologia; 2013 Oct; 45(5):326-31. PubMed ID: 22970857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of NAD(P)H:flavin oxidoreductase from Escherichia coli.
    Ingelman M; Ramaswamy S; Nivière V; Fontecave M; Eklund H
    Biochemistry; 1999 Jun; 38(22):7040-9. PubMed ID: 10353815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of the short-chain flavin reductase HpaC from Sulfolobus tokodaii strain 7 in its three states: NAD(P)(+)(-)free, NAD(+)(-)bound, and NADP(+)(-)bound.
    Okai M; Kudo N; Lee WC; Kamo M; Nagata K; Tanokura M
    Biochemistry; 2006 Apr; 45(16):5103-10. PubMed ID: 16618099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic reaction profile for NADH-dependent reduction of aromatic aldehydes by xylose reductase from Candida tenuis.
    Mayr P; Nidetzky B
    Biochem J; 2002 Sep; 366(Pt 3):889-99. PubMed ID: 12003638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of activity and inhibitor sensitivity of rabbit aldose reductase-like protein (AKR1B19) by oxidized glutathione and SH-reagents.
    Endo S; Fujimoto A; Kumada S; Matsunaga T; Ohno S; Mano J; Tajima K; El-Kabbani O; Hara A
    Chem Biol Interact; 2013 Feb; 202(1-3):146-52. PubMed ID: 23261715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interflavin one-electron transfer in the inducible nitric oxide synthase reductase domain and NADPH-cytochrome P450 reductase.
    Yamamoto K; Kimura S; Shiro Y; Iyanagi T
    Arch Biochem Biophys; 2005 Aug; 440(1):65-78. PubMed ID: 16009330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of a second form of NADPH-flavin reductase purified from human erythrocytes.
    Yubisui T; Tamura M; Takeshita M
    Biochem Int; 1987 Jul; 15(1):1-8. PubMed ID: 3453680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases.
    Kavanagh KL; Klimacek M; Nidetzky B; Wilson DK
    Biochem J; 2003 Jul; 373(Pt 2):319-26. PubMed ID: 12733986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel homodimeric and heterodimeric rat gamma-hydroxybutyrate synthases that associate with the Golgi apparatus define a distinct subclass of aldo-keto reductase 7 family proteins.
    Kelly VP; Sherratt PJ; Crouch DH; Hayes JD
    Biochem J; 2002 Sep; 366(Pt 3):847-61. PubMed ID: 12071861
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.