BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20446037)

  • 1. Finite element shape optimization for biodegradable magnesium alloy stents.
    Wu W; Petrini L; Gastaldi D; Villa T; Vedani M; Lesma E; Previtali B; Migliavacca F
    Ann Biomed Eng; 2010 Sep; 38(9):2829-40. PubMed ID: 20446037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite element analyses for optimization design of biodegradable magnesium alloy stent.
    Li J; Zheng F; Qiu X; Wan P; Tan L; Yang K
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():705-14. PubMed ID: 25063172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental data confirm numerical modeling of the degradation process of magnesium alloys stents.
    Wu W; Chen S; Gastaldi D; Petrini L; Mantovani D; Yang K; Tan L; Migliavacca F
    Acta Biomater; 2013 Nov; 9(10):8730-9. PubMed ID: 23128160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Mechanical analysis on a new type of biodegradable magnesium-alloy stent].
    Wang X; Cui F; Li J; Zhao X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):338-41. PubMed ID: 19499798
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-Objective Optimization of Bioresorbable Magnesium Alloy Stent by Kriging Surrogate Model.
    Wang H; Jiao L; Sun J; Yan P; Wang X; Qiu T
    Cardiovasc Eng Technol; 2022 Dec; 13(6):829-839. PubMed ID: 35414048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A numerical corrosion-fatigue model for biodegradable Mg alloy stents.
    Shen Z; Zhao M; Zhou X; Yang H; Liu J; Guo H; Zheng Y; Yang JA
    Acta Biomater; 2019 Oct; 97():671-680. PubMed ID: 31394294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the design of a bioabsorbable metal stent using computer simulation methods.
    Grogan JA; Leen SB; McHugh PE
    Biomaterials; 2013 Nov; 34(33):8049-60. PubMed ID: 23906516
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing coronary stent material performance on a common geometric platform through simulated bench testing.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2012 Aug; 12():129-38. PubMed ID: 22705476
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plastic strains during stent deployment have a critical influence on the rate of corrosion in absorbable magnesium stents.
    Galvin E; Cummins C; Yoshihara S; Mac Donald BJ; Lally C
    Med Biol Eng Comput; 2017 Aug; 55(8):1261-1275. PubMed ID: 27785607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A quantitative study on magnesium alloy stent biodegradation.
    Gao Y; Wang L; Gu X; Chu Z; Guo M; Fan Y
    J Biomech; 2018 Jun; 74():98-105. PubMed ID: 29735265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Finite element analysis for compression and expansion behavior of magnesium stent].
    Chen H; Liu X; Yuan G; Zhang L; Li Z; Luo Q; Lin F
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 May; 38(3):161-4, 176. PubMed ID: 25241506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuum damage model for bioresorbable magnesium alloy devices - Application to coronary stents.
    Gastaldi D; Sassi V; Petrini L; Vedani M; Trasatti S; Migliavacca F
    J Mech Behav Biomed Mater; 2011 Apr; 4(3):352-65. PubMed ID: 21316623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Absorbable coronary stents. New promising technology].
    Erbel R; Böse D; Haude M; Kordish I; Churzidze S; Malyar N; Konorza T; Sack S
    Herz; 2007 Jun; 32(4):308-19. PubMed ID: 17607538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Mg alloy tubes for biodegradable stent application.
    Hanada K; Matsuzaki K; Huang X; Chino Y
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4746-50. PubMed ID: 24094183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology?
    Heublein B; Rohde R; Kaese V; Niemeyer M; Hartung W; Haverich A
    Heart; 2003 Jun; 89(6):651-6. PubMed ID: 12748224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Development of biodegradable magnesium-based biomaterials].
    Zhu S; Xu L; Huang N
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):437-9, 451. PubMed ID: 19499820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The processing of Mg alloy micro-tubes for biodegradable vascular stents.
    Liu F; Chen C; Niu J; Pei J; Zhang H; Huang H; Yuan G
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():400-7. PubMed ID: 25579940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element analysis and stent design: Reduction of dogboning.
    De Beule M; Van Impe R; Verhegghe B; Segers P; Verdonck P
    Technol Health Care; 2006; 14(4-5):233-41. PubMed ID: 17065746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular stent design and vessel stresses: a finite element analysis.
    Lally C; Dolan F; Prendergast PJ
    J Biomech; 2005 Aug; 38(8):1574-81. PubMed ID: 15958213
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The processing of ultrafine-grained Mg tubes for biodegradable stents.
    Ge Q; Dellasega D; Demir AG; Vedani M
    Acta Biomater; 2013 Nov; 9(10):8604-10. PubMed ID: 23333440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.