These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20446037)

  • 21. Stent expansion in curved vessel and their interactions: a finite element analysis.
    Wu W; Wang WQ; Yang DZ; Qi M
    J Biomech; 2007; 40(11):2580-5. PubMed ID: 17198706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computational micromechanics of bioabsorbable magnesium stents.
    Grogan JA; Leen SB; McHugh PE
    J Mech Behav Biomed Mater; 2014 Jun; 34():93-105. PubMed ID: 24566380
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a pseudo-physiological test bench specific to the development of biodegradable metallic biomaterials.
    Lévesque J; Hermawan H; Dubé D; Mantovani D
    Acta Biomater; 2008 Mar; 4(2):284-95. PubMed ID: 18033745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Drug-eluting bioabsorbable magnesium stent.
    Di Mario C; Griffiths H; Goktekin O; Peeters N; Verbist J; Bosiers M; Deloose K; Heublein B; Rohde R; Kasese V; Ilsley C; Erbel R
    J Interv Cardiol; 2004 Dec; 17(6):391-5. PubMed ID: 15546291
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Current state of the absorbable metallic (magnesium) stent.
    Waksman R
    EuroIntervention; 2009 Dec; 5 Suppl F():F94-7. PubMed ID: 22100686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A corrosion model for bioabsorbable metallic stents.
    Grogan JA; O'Brien BJ; Leen SB; McHugh PE
    Acta Biomater; 2011 Sep; 7(9):3523-33. PubMed ID: 21664498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Design strategy for balloon-expandable stents made of biodegradable polymers using finite element analysis].
    Schlun M; Martin H; Grabow N; Schmitz KP
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():831-4. PubMed ID: 12465316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Finite element analysis of the expansion behavior of coronary stents].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Dec; 23(6):1258-62, 1266. PubMed ID: 17228721
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finite element analysis of the mechanical performance of a zinc alloy stent with the tenon-and-mortise structure.
    Wang S; Wu D; Li G; Peng K; Mu Y; Ohta M; Anzai H; Qiao A
    Technol Health Care; 2022; 30(2):351-359. PubMed ID: 34334438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A strain-mediated corrosion model for bioabsorbable metallic stents.
    Galvin E; O'Brien D; Cummins C; Mac Donald BJ; Lally C
    Acta Biomater; 2017 Jun; 55():505-517. PubMed ID: 28433790
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiobjective design optimisation of coronary stents.
    Pant S; Limbert G; Curzen NP; Bressloff NW
    Biomaterials; 2011 Nov; 32(31):7755-73. PubMed ID: 21821283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Topology optimization of a novel stent platform with drug reservoirs.
    Wu W; Yang DZ; Huang YY; Qi M; Wang WQ
    Med Eng Phys; 2008 Nov; 30(9):1177-85. PubMed ID: 18407779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall.
    Migliavacca F; Petrini L; Massarotti P; Schievano S; Auricchio F; Dubini G
    Biomech Model Mechanobiol; 2004 Jun; 2(4):205-17. PubMed ID: 15029511
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanophasic biodegradation enhances the durability and biocompatibility of magnesium alloys for the next-generation vascular stents.
    Mao L; Shen L; Niu J; Zhang J; Ding W; Wu Y; Fan R; Yuan G
    Nanoscale; 2013 Oct; 5(20):9517-22. PubMed ID: 23989064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Degradation and interaction with bone of magnesium alloy WE43 implants: A long-term follow-up in vivo rat tibia study.
    Oshibe N; Marukawa E; Yoda T; Harada H
    J Biomater Appl; 2019 Apr; 33(9):1157-1167. PubMed ID: 30732512
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and biocompatibility of a novel corrodible fluoride-coated magnesium-calcium alloy with improved degradation kinetics and adequate mechanical properties for cardiovascular applications.
    Drynda A; Hassel T; Hoehn R; Perz A; Bach FW; Peuster M
    J Biomed Mater Res A; 2010 May; 93(2):763-75. PubMed ID: 19653306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gadolinium accumulation in organs of Sprague-Dawley® rats after implantation of a biodegradable magnesium-gadolinium alloy.
    Myrissa A; Braeuer S; Martinelli E; Willumeit-Römer R; Goessler W; Weinberg AM
    Acta Biomater; 2017 Jan; 48():521-529. PubMed ID: 27845277
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling and Experimental Studies of Coating Delamination of Biodegradable Magnesium Alloy Cardiovascular Stents.
    Chen C; Tan J; Wu W; Petrini L; Zhang L; Shi Y; Cattarinuzzi E; Pei J; Huang H; Ding W; Yuan G; Migliavacca F
    ACS Biomater Sci Eng; 2018 Nov; 4(11):3864-3873. PubMed ID: 33429615
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Design optimization of endovascular stent by finite element method].
    Wang W; Wang L; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Apr; 25(2):372-7. PubMed ID: 18610625
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Geometry parameterization and multidisciplinary constrained optimization of coronary stents.
    Pant S; Bressloff NW; Limbert G
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):61-82. PubMed ID: 21373889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.