These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 20446037)

  • 41. Differences of platelet adhesion and thrombus activation on amorphous silicon carbide, magnesium alloy, stainless steel, and cobalt chromium stent surfaces.
    Hansi C; Arab A; Rzany A; Ahrens I; Bode C; Hehrlein C
    Catheter Cardiovasc Interv; 2009 Mar; 73(4):488-96. PubMed ID: 19235237
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Finite element simulation and optimization of mechanical performance of the magnesium-alloy biliary stent.
    Zhang Y; Ni X; Pan C
    Int J Numer Method Biomed Eng; 2022 May; 38(5):e3592. PubMed ID: 35293160
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo and in vitro evaluation of a biodegradable magnesium vascular stent designed by shape optimization strategy.
    Chen C; Chen J; Wu W; Shi Y; Jin L; Petrini L; Shen L; Yuan G; Ding W; Ge J; Edelman ER; Migliavacca F
    Biomaterials; 2019 Nov; 221():119414. PubMed ID: 31419654
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biomaterial optimization in a percutaneous aortic valve stent using finite element analysis.
    Kumar GV; Mathew L
    Cardiovasc Revasc Med; 2009; 10(4):247-51. PubMed ID: 19815172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite element comparison of performance related characteristics of balloon expandable stents.
    Donnelly EW; Bruzzi MS; Connolley T; McHugh PE
    Comput Methods Biomech Biomed Engin; 2007 Apr; 10(2):103-10. PubMed ID: 18651276
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A multi-dimensional non-uniform corrosion model for bioabsorbable metallic vascular stents.
    Shi W; Li H; Mitchell K; Zhang C; Zhu T; Jin Y; Zhao D
    Acta Biomater; 2021 Sep; 131():572-580. PubMed ID: 34265472
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biocompatibility of fluoride-coated magnesium-calcium alloys with optimized degradation kinetics in a subcutaneous mouse model.
    Drynda A; Seibt J; Hassel T; Bach FW; Peuster M
    J Biomed Mater Res A; 2013 Jan; 101(1):33-43. PubMed ID: 22767427
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Realistic finite element-based stent design: the impact of balloon folding.
    De Beule M; Mortier P; Carlier SG; Verhegghe B; Van Impe R; Verdonck P
    J Biomech; 2008; 41(2):383-9. PubMed ID: 17920068
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A biodegradable magnesium alloy vascular stent structure: Design, optimisation and evaluation.
    Li Y; Wang Y; Shen Z; Miao F; Wang J; Sun Y; Zhu S; Zheng Y; Guan S
    Acta Biomater; 2022 Apr; 142():402-412. PubMed ID: 35085798
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Numerical modeling of shape memory alloy vascular stent's self-expandable progress and "optimized grid" of stent].
    Xu Q; Liu Y; Wang B; He J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1101-6. PubMed ID: 19024455
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Nonlinear finite element analysis for compression behavior of intravascular stents].
    Ning J; Zeng P; Lei LP
    Zhongguo Yi Liao Qi Xie Za Zhi; 2008 Jan; 32(1):10-3. PubMed ID: 18438042
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Optimization based on finite element technique of nitinol stent].
    Lin F; Liu X; Huang N; Gao Q; Li Z; Yao T; Luo Q; Huang J
    Zhongguo Yi Liao Qi Xie Za Zhi; 2014 Mar; 38(2):98-101. PubMed ID: 24941770
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Investigation on large elastoplastic deformation in expansion and springback for a composited bioresorbable stent.
    Chen Y; Shang X
    J Mech Behav Biomed Mater; 2021 Jul; 119():104500. PubMed ID: 33894526
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The degradation and transport mechanism of a Mg-Nd-Zn-Zr stent in rabbit common carotid artery: A 20-month study.
    Zhang J; Li H; Wang W; Huang H; Pei J; Qu H; Yuan G; Li Y
    Acta Biomater; 2018 Mar; 69():372-384. PubMed ID: 29369807
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Degradation mechanism of magnesium alloy stent under simulated human micro-stress environment.
    Liu D; Hu S; Yin X; Liu J; Jia Z; Li Q
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():263-270. PubMed ID: 29519438
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis.
    Wu W; Qi M; Liu XP; Yang DZ; Wang WQ
    J Biomech; 2007; 40(13):3034-40. PubMed ID: 17511995
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Optimization of intra-vascular stent designs].
    Zhou YH
    Zhongguo Yi Liao Qi Xie Za Zhi; 2007 Mar; 31(2):98-100. PubMed ID: 17552170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The platinum chromium element stent platform: from alloy, to design, to clinical practice.
    Menown IB; Noad R; Garcia EJ; Meredith I
    Adv Ther; 2010 Mar; 27(3):129-41. PubMed ID: 20437213
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Multi-objective optimization of nitinol stent design.
    Alaimo G; Auricchio F; Conti M; Zingales M
    Med Eng Phys; 2017 Sep; 47():13-24. PubMed ID: 28705512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Coating bioabsorption and chronic bare metal scaffolding versus fully bioabsorbable stent.
    Waksman R; Pakala R
    EuroIntervention; 2009 Dec; 5 Suppl F():F36-42. PubMed ID: 22100674
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.