These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 20446037)

  • 61. Flow-induced corrosion behavior of absorbable magnesium-based stents.
    Wang J; Giridharan V; Shanov V; Xu Z; Collins B; White L; Jang Y; Sankar J; Huang N; Yun Y
    Acta Biomater; 2014 Dec; 10(12):5213-5223. PubMed ID: 25200844
    [TBL] [Abstract][Full Text] [Related]  

  • 62. A physical corrosion model for bioabsorbable metal stents.
    Grogan JA; Leen SB; McHugh PE
    Acta Biomater; 2014 May; 10(5):2313-22. PubMed ID: 24412771
    [TBL] [Abstract][Full Text] [Related]  

  • 63. [Finite element analysis of the mechanical property of the resistance to compressing of the coronary stent].
    Wang W; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1008-12. PubMed ID: 17121342
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Finite element analysis of stent deployment: understanding stent fracture in percutaneous pulmonary valve implantation.
    Schievano S; Petrini L; Migliavacca F; Coats L; Nordmeyer J; Lurz P; Khambadkone S; Taylor AM; Dubini G; Bonhoeffer P
    J Interv Cardiol; 2007 Dec; 20(6):546-54. PubMed ID: 18042059
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vivo biocompatibility and degradation behavior of Mg alloy coated by calcium phosphate in a rabbit model.
    Yang JX; Cui FZ; Lee IS; Zhang Y; Yin QS; Xia H; Yang SX
    J Biomater Appl; 2012 Aug; 27(2):153-64. PubMed ID: 21363872
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A novel biodegradable frontal sinus stent (MgNd2): a long-term animal study.
    Durisin M; Seitz JM; Reifenrath J; Weber CM; Eifler R; Maier HJ; Lenarz T; Klose C
    Eur Arch Otorhinolaryngol; 2016 Jun; 273(6):1455-67. PubMed ID: 26341887
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Finite element analyses for improved design of peripheral stents.
    Lim YH; Jeong HY
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):653-662. PubMed ID: 28349767
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method.
    Wang WQ; Liang DK; Yang DZ; Qi M
    J Biomech; 2006; 39(1):21-32. PubMed ID: 16271584
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.
    Liu Y; Zhu G; Yang H; Wang C; Zhang P; Han G
    J Mech Behav Biomed Mater; 2018 Jan; 77():157-163. PubMed ID: 28917130
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Mechanical analysis of a novel biodegradable zinc alloy stent based on a degradation model.
    Peng K; Cui X; Qiao A; Mu Y
    Biomed Eng Online; 2019 Apr; 18(1):39. PubMed ID: 30940146
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of stent design parameters on normal artery wall mechanics.
    Bedoya J; Meyer CA; Timmins LH; Moreno MR; Moore JE
    J Biomech Eng; 2006 Oct; 128(5):757-65. PubMed ID: 16995763
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Finite element methods to analyze helical stent expansion.
    Paryab N; Cronin DS; Lee-Sullivan P
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):339-52. PubMed ID: 24123985
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modeling of stents exhibiting negative Poisson's ratio effect.
    Raamachandran J; Jayavenkateshwaran K
    Comput Methods Biomech Biomed Engin; 2007 Aug; 10(4):245-55. PubMed ID: 17671858
    [TBL] [Abstract][Full Text] [Related]  

  • 74. The cold-rolling behaviour of AZ31 tubes for fabrication of biodegradable stents.
    Zhang Y; Kent D; Wang G; StJohn D; Dargusch MS
    J Mech Behav Biomed Mater; 2014 Nov; 39():292-303. PubMed ID: 25171746
    [TBL] [Abstract][Full Text] [Related]  

  • 75. [Finite element method and computational fluid dynamics used in the analysis of a stent].
    Liang D; Yang D; Qi M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Jun; 24(3):549-53. PubMed ID: 17713259
    [TBL] [Abstract][Full Text] [Related]  

  • 76. A computational optimization study of a self-expandable transcatheter aortic valve.
    Barati S; Fatouraee N; Nabaei M; Berti F; Petrini L; Migliavacca F; Rodriguez Matas JF
    Comput Biol Med; 2021 Dec; 139():104942. PubMed ID: 34700254
    [TBL] [Abstract][Full Text] [Related]  

  • 77. On the finite element modelling of balloon-expandable stents.
    Ju F; Xia Z; Sasaki K
    J Mech Behav Biomed Mater; 2008 Jan; 1(1):86-95. PubMed ID: 19627774
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ex vivo blood vessel bioreactor for analysis of the biodegradation of magnesium stent models with and without vessel wall integration.
    Wang J; Liu L; Wu Y; Maitz MF; Wang Z; Koo Y; Zhao A; Sankar J; Kong D; Huang N; Yun Y
    Acta Biomater; 2017 Mar; 50():546-555. PubMed ID: 28013101
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Virtual optimization of self-expandable braided wire stents.
    De Beule M; Van Cauter S; Mortier P; Van Loo D; Van Impe R; Verdonck P; Verhegghe B
    Med Eng Phys; 2009 May; 31(4):448-53. PubMed ID: 19117791
    [TBL] [Abstract][Full Text] [Related]  

  • 80. A comparative reliability and performance study of different stent designs in terms of mechanical properties: foreshortening, recoil, radial force, and flexibility.
    Kim DB; Choi H; Joo SM; Kim HK; Shin JH; Hwang MH; Choi J; Kim DG; Lee KH; Lim CH; Yoo SK; Lee HM; Sun K
    Artif Organs; 2013 Apr; 37(4):368-79. PubMed ID: 23461583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.