These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 20446080)

  • 1. Novel multicolor fluorescently labeled silica nanoparticles for interface fluorescence resonance energy transfer to and from labeled avidin.
    Saleh SM; Müller R; Mader HS; Duerkop A; Wolfbeis OS
    Anal Bioanal Chem; 2010 Oct; 398(4):1615-23. PubMed ID: 20446080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A DNA hybridization detection based on fluorescence resonance energy transfer between dye-doped core-shell silica nanoparticles and gold nanoparticles.
    Gao F; Cui P; Chen X; Ye Q; Li M; Wang L
    Analyst; 2011 Oct; 136(19):3973-80. PubMed ID: 21845282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence resonance energy transfer mediated large Stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging.
    He X; Wang Y; Wang K; Chen M; Chen S
    Anal Chem; 2012 Nov; 84(21):9056-64. PubMed ID: 23017033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Covalent conjugation of avidin with dye-doped silica nanopaticles and preparation of high density avidin nanoparticles as photostable bioprobes.
    Chen ZZ; Cai L; Dong XM; Tang HW; Pang DW
    Biosens Bioelectron; 2012; 37(1):75-81. PubMed ID: 22608767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluorescent silica nanoparticle-based probe for the detection of ozone via fluorescence resonance energy transfer.
    Qi W; Wu D; Zhao J; Liu Z; Xu M; Anjum S; Xu G
    Analyst; 2013 Nov; 138(21):6305-8. PubMed ID: 24049767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multicolor dye-doped silica nanoparticles independent of FRET.
    Xu J; Liang J; Li J; Yang W
    Langmuir; 2010 Oct; 26(20):15722-5. PubMed ID: 20843056
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and characterization of photoswitchable fluorescent SiO2 nanoparticles.
    May F; Peter M; Hütten A; Prodi L; Mattay J
    Chemistry; 2012 Jan; 18(3):814-21. PubMed ID: 22213584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Comparative Study of Fluorescein Isothiocyanate-Encapsulated Silica Nanoparticles Prepared in Seven Different Routes for Developing Fingerprints on Non-Porous Surfaces.
    Alsolmy E; Abdelwahab WM; Patonay G
    J Fluoresc; 2018 Sep; 28(5):1049-1058. PubMed ID: 30032378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels.
    Wang K; He X; Yang X; Shi H
    Acc Chem Res; 2013 Jul; 46(7):1367-76. PubMed ID: 23489227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical imaging of absorption and distribution of RITC-SiO2 nanoparticles after oral administration.
    Lee CM; Lee TK; Kim DI; Kim YR; Kim MK; Jeong HJ; Sohn MH; Lim ST
    Int J Nanomedicine; 2014; 9 Suppl 2(Suppl 2):243-50. PubMed ID: 25565842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the activity of matrix metalloproteinase II with a sequentially click-labeled silica nanoparticle FRET probe.
    Achatz DE; Mezo G; Kele P; Wolfbeis OS
    Chembiochem; 2009 Sep; 10(14):2316-20. PubMed ID: 19637149
    [No Abstract]   [Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer (FRET)-based nanoarchitecture for monitoring deubiquitinating enzyme activity.
    Liang YY; Zhang J; Cui H; Shao ZS; Cheng C; Wang YB; Wang HS
    Chem Commun (Camb); 2020 Mar; 56(21):3183-3186. PubMed ID: 32067022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free detection of adenosine based on fluorescence resonance energy transfer between fluorescent silica nanoparticles and unmodified gold nanoparticles.
    Qiang W; Liu H; Li W; Chen X; Xu D
    Anal Chim Acta; 2014 May; 828():92-8. PubMed ID: 24845820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyvinyl pyrrolidone capped fluorescent anthracene nanoparticles for sensing fluorescein sodium in aqueous solution and analytical application for ophthalmic samples.
    Bhopate DP; Mahajan PG; Garadkar KM; Kolekar GB; Patil SR
    Luminescence; 2015 Nov; 30(7):1055-63. PubMed ID: 25736374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silica nanoparticle phytotoxicity to Arabidopsis thaliana.
    Slomberg DL; Schoenfisch MH
    Environ Sci Technol; 2012 Sep; 46(18):10247-54. PubMed ID: 22889047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles.
    Ma K; Sai H; Wiesner U
    J Am Chem Soc; 2012 Aug; 134(32):13180-3. PubMed ID: 22830608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FRET spectral unmixing: a ratiometric fluorescent nanoprobe for hypochlorite.
    Chen G; Song F; Wang J; Yang Z; Sun S; Fan J; Qiang X; Wang X; Dou B; Peng X
    Chem Commun (Camb); 2012 Mar; 48(24):2949-51. PubMed ID: 22237551
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multidonor deep-UV FRET study of protein-ligand binding and its potential to obtain structure information.
    Li Q; Seeger S
    J Phys Chem B; 2011 Nov; 115(46):13643-9. PubMed ID: 21995593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Avidin-conjugated calcium phosphate nanoparticles as a modular targeting system for the attachment of biotinylated molecules in vitro and in vivo.
    van der Meer SB; Knuschke T; Frede A; Schulze N; Westendorf AM; Epple M
    Acta Biomater; 2017 Jul; 57():414-425. PubMed ID: 28552820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.