These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 20446659)

  • 1. High current generation coupled to caustic production using a lamellar bioelectrochemical system.
    Rabaey K; Bützer S; Brown S; Keller J; Rozendal RA
    Environ Sci Technol; 2010 Jun; 44(11):4315-21. PubMed ID: 20446659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New applications and performance of bioelectrochemical systems.
    Hamelers HV; Ter Heijne A; Sleutels TH; Jeremiasse AW; Strik DP; Buisman CJ
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1673-85. PubMed ID: 20024546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells.
    Luo H; Jenkins PE; Ren Z
    Environ Sci Technol; 2011 Jan; 45(1):340-4. PubMed ID: 21121677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitrobenzene removal in bioelectrochemical systems.
    Mu Y; Rozendal RA; Rabaey K; Keller J
    Environ Sci Technol; 2009 Nov; 43(22):8690-5. PubMed ID: 20028072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards practical implementation of bioelectrochemical wastewater treatment.
    Rozendal RA; Hamelers HV; Rabaey K; Keller J; Buisman CJ
    Trends Biotechnol; 2008 Aug; 26(8):450-9. PubMed ID: 18585807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding long-term changes in microbial fuel cell performance using electrochemical impedance spectroscopy.
    Borole AP; Aaron D; Hamilton CY; Tsouris C
    Environ Sci Technol; 2010 Apr; 44(7):2740-5. PubMed ID: 20222678
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal set anode potentials vary in bioelectrochemical systems.
    Wagner RC; Call DF; Logan BE
    Environ Sci Technol; 2010 Aug; 44(16):6036-41. PubMed ID: 20704197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling up microbial fuel cells and other bioelectrochemical systems.
    Logan BE
    Appl Microbiol Biotechnol; 2010 Feb; 85(6):1665-71. PubMed ID: 20013119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactor concepts for bioelectrochemical syntheses and energy conversion.
    Krieg T; Sydow A; Schröder U; Schrader J; Holtmann D
    Trends Biotechnol; 2014 Dec; 32(12):645-55. PubMed ID: 25457389
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial uniformity of microbial diversity in a continuous bioelectrochemical system.
    Dennis PG; Guo K; Imelfort M; Jensen P; Tyson GW; Rabaey K
    Bioresour Technol; 2013 Feb; 129():599-605. PubMed ID: 23313735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dechlorination of 4-chlorophenol to phenol in bioelectrochemical systems.
    Wen Q; Yang T; Wang S; Chen Y; Cong L; Qu Y
    J Hazard Mater; 2013 Jan; 244-245():743-9. PubMed ID: 23183343
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light energy to bioelectricity: photosynthetic microbial fuel cells.
    Rosenbaum M; He Z; Angenent LT
    Curr Opin Biotechnol; 2010 Jun; 21(3):259-64. PubMed ID: 20378333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells.
    Call DF; Logan BE
    Biosens Bioelectron; 2011 Jul; 26(11):4526-31. PubMed ID: 21652198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectrochemical system for recalcitrant p-nitrophenol removal.
    Shen J; Feng C; Zhang Y; Jia F; Sun X; Li J; Han W; Wang L; Mu Y
    J Hazard Mater; 2012 Mar; 209-210():516-9. PubMed ID: 22277341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduction of pH buffer requirement in bioelectrochemical systems.
    Sleutels TH; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Nov; 44(21):8259-63. PubMed ID: 20942476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine.
    Sakai S; Yagishita T
    Biotechnol Bioeng; 2007 Oct; 98(2):340-8. PubMed ID: 17390385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor.
    Tao HC; Zhang LJ; Gao ZY; Wu WM
    Bioresour Technol; 2011 Nov; 102(22):10334-9. PubMed ID: 21940162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A membrane-free, continuously feeding, single chamber up-flow biocatalyzed electrolysis reactor for nitrobenzene reduction.
    Wang AJ; Cui D; Cheng HY; Guo YQ; Kong FY; Ren NQ; Wu WM
    J Hazard Mater; 2012 Jan; 199-200():401-9. PubMed ID: 22152919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.