These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20446702)

  • 21. Thermodynamic properties of nucleotide reductase reactions.
    Alberty RA
    Biochemistry; 2004 Aug; 43(30):9840-5. PubMed ID: 15274638
    [TBL] [Abstract][Full Text] [Related]  

  • 22. eQuilibrator--the biochemical thermodynamics calculator.
    Flamholz A; Noor E; Bar-Even A; Milo R
    Nucleic Acids Res; 2012 Jan; 40(Database issue):D770-5. PubMed ID: 22064852
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biochemical thermodynamics.
    Alberty RA
    Biochim Biophys Acta; 1994 Jul; 1207(1):1-11. PubMed ID: 8043597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Standard thermodynamic formation properties for the adenosine 5'-triphosphate series.
    Alberty RA; Goldberg RN
    Biochemistry; 1992 Nov; 31(43):10610-5. PubMed ID: 1420176
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thermodynamic properties of enzyme-catalyzed reactions involving cytosine, uracil, thymine, and their nucleosides and nucleotides.
    Alberty RA
    Biophys Chem; 2007 Apr; 127(1-2):91-6. PubMed ID: 17240519
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermodynamic properties of weak acids involved in enzyme-catalyzed reactions.
    Alberty RA
    J Phys Chem B; 2006 Mar; 110(10):5012-6. PubMed ID: 16526744
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chemical and biochemical thermodynamics: Is it time for a reunification?
    Iotti S; Raff L; Sabatini A
    Biophys Chem; 2017 Feb; 221():49-57. PubMed ID: 27866672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Standard Gibbs energy of metabolic reactions: IV. Triosephosphate isomerase reaction.
    Greinert T; Baumhove K; Sadowski G; Held C
    Biophys Chem; 2020 Mar; 258():106330. PubMed ID: 31981743
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The interaction of glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver in vivo.
    Heath DF; Threlfall CJ
    Biochem J; 1968 Nov; 110(2):337-62. PubMed ID: 5726212
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Apparent equilibrium constants and standard transformed Gibbs energies of biochemical reactions involving carbon dioxide.
    Alberty RA
    Arch Biochem Biophys; 1997 Dec; 348(1):116-24. PubMed ID: 9390181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamics of the disproportionation of adenosine 5'-diphosphate to adenosine 5'-triphosphate and adenosine 5'-monophosphate. I. Equilibrium model.
    Goldberg RN; Tewari YB
    Biophys Chem; 1991 Jul; 40(3):241-61. PubMed ID: 17014781
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic databases for proteins and protein-nucleic acid interactions.
    Sarai A; Gromiha MM; An J; Prabakaran P; Selvaraj S; Kono H; Oobatake M; Uedaira H
    Biopolymers; 2001-2002; 61(2):121-6. PubMed ID: 11987161
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The thermodynamics of protein folding: a critique of widely used quasi-thermodynamic interpretations and a restatement based on the Gibbs-Duhem relation and consistent with the Phase Rule.
    Pethica BA
    Phys Chem Chem Phys; 2010 Jul; 12(27):7445-56. PubMed ID: 20480070
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of Optimal Thermodynamic Models of the Tricarboxylic Acid Cycle from Heterotrophs, Cyanobacteria, and Green Sulfur Bacteria.
    Thomas DG; Jaramillo-Riveri S; Baxter DJ; Cannon WR
    J Phys Chem B; 2014 Dec; 118(51):14745-60. PubMed ID: 25495377
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic and thermodynamic principles determining the structural design of ATP-producing systems.
    Stephani A; Heinrich R
    Bull Math Biol; 1998 May; 60(3):505-43. PubMed ID: 9652953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in the standard transformed thermodynamic properties of enzyme-catalyzed reactions with ionic strength.
    Alberty RA
    J Phys Chem B; 2007 Apr; 111(14):3847-52. PubMed ID: 17388526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermodynamics and kinetics of the glyoxylate cycle.
    Alberty RA
    Biochemistry; 2006 Dec; 45(51):15838-43. PubMed ID: 17176106
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Misuse of thermodynamics in the interpretation of isothermal titration calorimetry data for ligand binding to proteins.
    Pethica BA
    Anal Biochem; 2015 Mar; 472():21-9. PubMed ID: 25484232
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamics and Kinetics of Glycolytic Reactions. Part I: Kinetic Modeling Based on Irreversible Thermodynamics and Validation by Calorimetry.
    Vogel K; Greinert T; Reichard M; Held C; Harms H; Maskow T
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33172189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chelate effect and thermodynamics of metal complex formation in solution: a quantum chemical study.
    Vallet V; Wahlgren U; Grenthe I
    J Am Chem Soc; 2003 Dec; 125(48):14941-50. PubMed ID: 14640672
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.