These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 20446702)

  • 41. Thermodynamics of enzyme-catalyzed reactions--a database for quantitative biochemistry.
    Goldberg RN; Tewari YB; Bhat TN
    Bioinformatics; 2004 Nov; 20(16):2874-7. PubMed ID: 15145806
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of uncertainties in pH, pMg, activity coefficients, metabolite concentrations, and other factors on the analysis of the thermodynamic feasibility of metabolic pathways.
    Vojinović V; von Stockar U
    Biotechnol Bioeng; 2009 Jul; 103(4):780-95. PubMed ID: 19365870
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Thermodynamic modeling of ionic liquid systems: development and detailed overview of novel methodology based on the PC-SAFT.
    Paduszyński K; Domańska U
    J Phys Chem B; 2012 Apr; 116(16):5002-18. PubMed ID: 22469027
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calculation of solvation free energies of charged solutes using mixed cluster/continuum models.
    Bryantsev VS; Diallo MS; Goddard WA
    J Phys Chem B; 2008 Aug; 112(32):9709-19. PubMed ID: 18646800
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The redistribution of carbon label by the reactions involved in glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver.
    Heath DF
    Biochem J; 1968 Nov; 110(2):313-35. PubMed ID: 5726211
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Thermodynamic analysis of computed pathways integrated into the metabolic networks of E. coli and Synechocystis reveals contrasting expansion potential.
    Asplund-Samuelsson J; Janasch M; Hudson EP
    Metab Eng; 2018 Jan; 45():223-236. PubMed ID: 29278749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Thermodynamic analysis of biodegradation pathways.
    Finley SD; Broadbelt LJ; Hatzimanikatis V
    Biotechnol Bioeng; 2009 Jun; 103(3):532-41. PubMed ID: 19288443
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Thermodynamics of the purine nucleotide cycle.
    Alberty RA
    Biophys Chem; 2006 Jun; 122(1):74-7. PubMed ID: 16603306
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Thermodynamics of stoichiometric biochemical networks in living systems far from equilibrium.
    Qian H; Beard DA
    Biophys Chem; 2005 Apr; 114(2-3):213-20. PubMed ID: 15829355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Thermodynamics of reactions of nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate.
    Alberty RA
    Arch Biochem Biophys; 1993 Nov; 307(1):8-14. PubMed ID: 8239668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Thermodynamic properties of enzyme-catalyzed reactions involving guanine, xanthine, and their nucleosides and nucleotides.
    Alberty RA
    Biophys Chem; 2006 Jun; 121(3):157-62. PubMed ID: 16466672
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bringing metabolic networks to life: convenience rate law and thermodynamic constraints.
    Liebermeister W; Klipp E
    Theor Biol Med Model; 2006 Dec; 3():41. PubMed ID: 17173669
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Thermodynamics of Bioreactions.
    Held C; Sadowski G
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():395-414. PubMed ID: 27276551
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions.
    Alberty RA
    Arch Biochem Biophys; 1998 Oct; 358(1):25-39. PubMed ID: 9750161
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computer modeling of mitochondrial tricarboxylic acid cycle, oxidative phosphorylation, metabolite transport, and electrophysiology.
    Wu F; Yang F; Vinnakota KC; Beard DA
    J Biol Chem; 2007 Aug; 282(34):24525-37. PubMed ID: 17591785
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Thermodynamic modeling of PCDD/Fs formation in thermal processes.
    Tan P; Hurtado I; Neuschütz D; Eriksson G
    Environ Sci Technol; 2001 May; 35(9):1867-74. PubMed ID: 11355206
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Thermodynamically consistent estimation of Gibbs free energy from data: data reconciliation approach.
    Salike S; Bhatt N
    Bioinformatics; 2020 Feb; 36(4):1219-1225. PubMed ID: 31584610
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The role of water in the thermodynamics of dilute aqueous solutions.
    Alberty RA
    Biophys Chem; 2003; 100(1-3):183-92. PubMed ID: 12646365
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Thermodynamics of the pyruvate kinase reaction and the reversal of glycolysis in heart and skeletal muscle.
    Dobson GP; Hitchins S; Teague WE
    J Biol Chem; 2002 Jul; 277(30):27176-82. PubMed ID: 11986306
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Standard transformed Gibbs energies of coenzyme A derivatives as functions of pH and ionic strength.
    Alberty RA
    Biophys Chem; 2003 May; 104(1):327-34. PubMed ID: 12834851
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.