BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20446731)

  • 1. Photoreductive dissolution of iron oxides trapped in ice and its environmental implications.
    Kim K; Choi W; Hoffmann MR; Yoon HI; Park BK
    Environ Sci Technol; 2010 Jun; 44(11):4142-8. PubMed ID: 20446731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced dissolution of manganese oxide in ice compared to aqueous phase under illuminated and dark conditions.
    Kim K; Yoon HI; Choi W
    Environ Sci Technol; 2012 Dec; 46(24):13160-6. PubMed ID: 23153016
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.
    Jeong D; Kim K; Min DW; Choi W
    Environ Sci Technol; 2015 Nov; 49(21):12816-22. PubMed ID: 26444653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous and Synergic Production of Bioavailable Iron and Reactive Iodine Species in Ice.
    Kim K; Menacherry SPM; Kim J; Chung HY; Jeong D; Saiz-Lopez A; Choi W
    Environ Sci Technol; 2019 Jul; 53(13):7355-7362. PubMed ID: 31081627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ligand-Specific Dissolution of Iron Oxides in Frozen Solutions.
    Menacherry SPM; Kim K; Lee W; Choi CH; Choi W
    Environ Sci Technol; 2018 Dec; 52(23):13766-13773. PubMed ID: 30395706
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photoinduced degradation of orange II on different iron (hydr)oxides in aqueous suspension: rate enhancement on addition of hydrogen peroxide, silver nitrate, and sodium fluoride.
    Du W; Xu Y; Wang Y
    Langmuir; 2008 Jan; 24(1):175-81. PubMed ID: 18052220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Various factors affecting photodecomposition of methylene blue by iron-oxides in an oxalate solution.
    Gulshan F; Yanagida S; Kameshima Y; Isobe T; Nakajima A; Okada K
    Water Res; 2010 May; 44(9):2876-84. PubMed ID: 20188391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury.
    Chadwick SP; Babiarz CL; Hurley JP; Armstrong DE
    Sci Total Environ; 2006 Sep; 368(1):177-88. PubMed ID: 16225911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles.
    Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y
    J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic effects of photogenerated Fe(II) on the ligand-controlled dissolution of Iron(hydr)oxides by EDTA and DFOB.
    Biswakarma J; Kang K; Schenkeveld WDC; Kraemer SM; Hering JG; Hug SJ
    Chemosphere; 2021 Jan; 263():128188. PubMed ID: 33297154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reevaluation of colorimetric iron determination methods commonly used in geomicrobiology.
    Braunschweig J; Bosch J; Heister K; Kuebeck C; Meckenstock RU
    J Microbiol Methods; 2012 Apr; 89(1):41-8. PubMed ID: 22349079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous photodegradation of bisphenol A with iron oxides and oxalate in aqueous solution.
    Li FB; Li XZ; Li XM; Liu TX; Dong J
    J Colloid Interface Sci; 2007 Jul; 311(2):481-90. PubMed ID: 17451730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pH on the Kinetics and Mechanism of Photoreductive Dissolution of Amorphous Iron Oxyhydroxide in the Presence of Natural Organic Matter: Implications to Iron Bioavailability in Surface Waters.
    Garg S; Xing G; Waite TD
    Environ Sci Technol; 2020 Jun; 54(11):6771-6780. PubMed ID: 32379429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reductive dissolution of Fe(III) oxides by Pseudomonas sp. 200.
    Arnold RG; DiChristina TJ; Hoffmann MR
    Biotechnol Bioeng; 1988 Oct; 32(9):1081-96. PubMed ID: 18587827
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-Promoted Photoreductive Dissolution of Goethite by Atmospheric Low-Molecular Dicarboxylates.
    Wang Z; Fu H; Zhang L; Song W; Chen J
    J Phys Chem A; 2017 Mar; 121(8):1647-1656. PubMed ID: 28145706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferrous iron sorption by hydrous metal oxides.
    Nano GV; Strathmann TJ
    J Colloid Interface Sci; 2006 May; 297(2):443-54. PubMed ID: 16337955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connecting observations of hematite (alpha-Fe2O3) growth catalyzed by Fe(II).
    Rosso KM; Yanina SV; Gorski CA; Larese-Casanova P; Scherer MM
    Environ Sci Technol; 2010 Jan; 44(1):61-7. PubMed ID: 20039734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoreductive dissolution of iron(III) (hydr)oxides in the absence and presence of organic ligands: experimental studies and kinetic modeling.
    Borer P; Sulzberger B; Hug SJ; Kraemer SM; Kretzschmar R
    Environ Sci Technol; 2009 Mar; 43(6):1864-70. PubMed ID: 19368184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioavailability of Mineral-Bound Iron to a Snow Algal-Bacterial Coculture and Implications for Albedo-Altering Snow Algal Blooms.
    Harrold ZR; Hausrath EM; Garcia AH; Murray AE; Tschauner O; Raymond JA; Huang S
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heterogeneous photodegradation of pentachlorophenol and iron cycling with goethite, hematite and oxalate under UVA illumination.
    Lan Q; Li FB; Sun CX; Liu CS; Li XZ
    J Hazard Mater; 2010 Feb; 174(1-3):64-70. PubMed ID: 19800730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.