BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 2044676)

  • 1. Demonstration of the potential for chronically injured neurons to regenerate axons into intraspinal peripheral nerve grafts.
    Houle JD
    Exp Neurol; 1991 Jul; 113(1):1-9. PubMed ID: 2044676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restriction of axonal retraction and promotion of axonal regeneration by chronically injured neurons after intraspinal treatment with glial cell line-derived neurotrophic factor (GDNF).
    Dolbeare D; Houle JD
    J Neurotrauma; 2003 Nov; 20(11):1251-61. PubMed ID: 14651811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Axonal regeneration after crush injury of rat central nervous system fibres innervating peripheral nerve grafts.
    David S; Aguayo AJ
    J Neurocytol; 1985 Feb; 14(1):1-12. PubMed ID: 4009210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regrowth of acute and chronic injured spinal pathways within supra-lesional post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2000; 101(1):197-210. PubMed ID: 11068148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons.
    Ye JH; Houle JD
    Exp Neurol; 1997 Jan; 143(1):70-81. PubMed ID: 9000447
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic versus extrinsic factors in determining the regeneration of the central processes of rat dorsal root ganglion neurons: the influence of a peripheral nerve graft.
    Chong MS; Woolf CJ; Turmaine M; Emson PC; Anderson PN
    J Comp Neurol; 1996 Jun; 370(1):97-104. PubMed ID: 8797160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regeneration of dorsal root axons into experimentally altered glial environments in the rat spinal cord.
    Sims TJ; Gilmore SA
    Exp Brain Res; 1994; 99(1):25-33. PubMed ID: 7523172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of adult rat sensory axons into intraspinal nerve grafts: promoting effects of conditioning lesion and graft predegeneration.
    Oudega M; Varon S; Hagg T
    Exp Neurol; 1994 Oct; 129(2):194-206. PubMed ID: 7957734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal cord transplants support the regeneration of axotomized neurons after spinal cord lesions at birth: a quantitative double-labeling study.
    Bernstein-Goral H; Bregman BS
    Exp Neurol; 1993 Sep; 123(1):118-32. PubMed ID: 8405272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions.
    Jakeman LB; Reier PJ
    J Comp Neurol; 1991 May; 307(2):311-34. PubMed ID: 1713233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peripheral nerve grafts after cervical spinal cord injury in adult cats.
    Côté MP; Hanna A; Lemay MA; Ollivier-Lanvin K; Santi L; Miller K; Monaghan R; Houlé JD
    Exp Neurol; 2010 Sep; 225(1):173-82. PubMed ID: 20599980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fetal spinal cord tissue in mini-guidance channels promotes longitudinal axonal growth after grafting into hemisected adult rat spinal cords.
    Bamber NI; Li H; Aebischer P; Xu XM
    Neural Plast; 1999; 6(4):103-21. PubMed ID: 10714264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise dependent increase in axon regeneration into peripheral nerve grafts by propriospinal but not sensory neurons after spinal cord injury is associated with modulation of regeneration-associated genes.
    Sachdeva R; Theisen CC; Ninan V; Twiss JL; Houlé JD
    Exp Neurol; 2016 Feb; 276():72-82. PubMed ID: 26366525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Both regenerating and late-developing pathways contribute to transplant-induced anatomical plasticity after spinal cord lesions at birth.
    Bregman BS; Bernstein-Goral H
    Exp Neurol; 1991 Apr; 112(1):49-63. PubMed ID: 1707369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The ability of developing spinal neurons to reinnervate a muscle through a peripheral nerve conduit is enhanced by cografted embryonic spinal cord.
    Sieradzan K; Vrbová G
    Exp Neurol; 1993 Aug; 122(2):232-43. PubMed ID: 8405261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord.
    Xu XM; Guénard V; Kleitman N; Bunge MB
    J Comp Neurol; 1995 Jan; 351(1):145-60. PubMed ID: 7896937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peripheral nerve autografts to the rat spinal cord: study on the origin and course of regenerating fibres.
    Fernandez E; Pallini R; Minciacchi D; Sbriccoli A
    Acta Neurochir (Wien); 1986; 82(1-2):57-63. PubMed ID: 3751705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regeneration of acutely and chronically injured descending respiratory pathways within post-traumatic nerve grafts.
    Decherchi P; Gauthier P
    Neuroscience; 2002; 112(1):141-52. PubMed ID: 12044479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regeneration of primary sensory axons into the adult rat spinal cord via a peripheral nerve graft bridging the lumbar dorsal roots to the dorsal column.
    Dam-Hieu P; Liu S; Choudhri T; Said G; Tadié M
    J Neurosci Res; 2002 May; 68(3):293-304. PubMed ID: 12111859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Extension and regeneration of corticospinal axons after early spinal injury and the maintenance of corticospinal topography.
    Bates CA; Stelzner DJ
    Exp Neurol; 1993 Sep; 123(1):106-17. PubMed ID: 8405271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.