These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 20447276)
1. The type 2C protein phosphatase FgPtc1p of the plant fungal pathogen Fusarium graminearum is involved in lithium toxicity and virulence. Jiang L; Yang J; Fan F; Zhang D; Wang X Mol Plant Pathol; 2010 Mar; 11(2):277-82. PubMed ID: 20447276 [TBL] [Abstract][Full Text] [Related]
2. A type 2C protein phosphatase FgPtc3 is involved in cell wall integrity, lipid metabolism, and virulence in Fusarium graminearum. Jiang J; Yun Y; Yang Q; Shim WB; Wang Z; Ma Z PLoS One; 2011; 6(9):e25311. PubMed ID: 21980420 [TBL] [Abstract][Full Text] [Related]
3. The transcription cofactor FgSwi6 plays a role in growth and development, carbendazim sensitivity, cellulose utilization, lithium tolerance, deoxynivalenol production and virulence in the filamentous fungus Fusarium graminearum. Liu N; Fan F; Qiu D; Jiang L Fungal Genet Biol; 2013; 58-59():42-52. PubMed ID: 23994322 [TBL] [Abstract][Full Text] [Related]
4. Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum. Zhang YZ; Wei ZZ; Liu CH; Chen Q; Xu BJ; Guo ZR; Cao YL; Wang Y; Han YN; Chen C; Feng X; Qiao YY; Zong LJ; Zheng T; Deng M; Jiang QT; Li W; Zheng YL; Wei YM; Qi PF Sci Rep; 2017 Apr; 7():46129. PubMed ID: 28387243 [TBL] [Abstract][Full Text] [Related]
5. FgTep1p is linked to the phosphatidylinositol-3 kinase signalling pathway and plays a role in the virulence of Fusarium graminearum on wheat. Zhang D; Fan F; Yang J; Wang X; Qiu D; Jiang L Mol Plant Pathol; 2010 Jul; 11(4):495-502. PubMed ID: 20618707 [TBL] [Abstract][Full Text] [Related]
6. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum. Lu S; Edwards MC Phytopathology; 2018 Apr; 108(4):510-520. PubMed ID: 29117786 [TBL] [Abstract][Full Text] [Related]
7. A role for topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation. Baldwin TK; Urban M; Brown N; Hammond-Kosack KE Mol Plant Microbe Interact; 2010 May; 23(5):566-77. PubMed ID: 20367465 [TBL] [Abstract][Full Text] [Related]
8. The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Van Thuat N; Schäfer W; Bormann J Mol Plant Microbe Interact; 2012 Sep; 25(9):1142-56. PubMed ID: 22591226 [TBL] [Abstract][Full Text] [Related]
9. FgEaf6 regulates virulence, asexual/sexual development and conidial septation in Fusarium graminearum. Qin J; Wu M; Zhou S Curr Genet; 2020 Jun; 66(3):517-529. PubMed ID: 31728616 [TBL] [Abstract][Full Text] [Related]
10. A sterol C-14 reductase encoded by FgERG24B is responsible for the intrinsic resistance of Fusarium graminearum to amine fungicides. Liu X; Fu J; Yun Y; Yin Y; Ma Z Microbiology (Reading); 2011 Jun; 157(Pt 6):1665-1675. PubMed ID: 21436218 [TBL] [Abstract][Full Text] [Related]
11. The Golgin Protein RUD3 Regulates Fusarium graminearum Growth and Virulence. Wang C; Wang Y; Zhang L; Yin Z; Liang Y; Chen L; Zou S; Dong H Appl Environ Microbiol; 2021 Feb; 87(6):. PubMed ID: 33452023 [TBL] [Abstract][Full Text] [Related]
12. Two 14-3-3 proteins contribute to nitrogen sensing through the TOR and glutamine synthetase-dependent pathways in Fusarium graminearum. Brauer EK; Manes N; Bonner C; Subramaniam R Fungal Genet Biol; 2020 Jan; 134():103277. PubMed ID: 31605748 [TBL] [Abstract][Full Text] [Related]
13. Involvement of threonine deaminase FgIlv1 in isoleucine biosynthesis and full virulence in Fusarium graminearum. Liu X; Xu J; Wang J; Ji F; Yin X; Shi J Curr Genet; 2015 Feb; 61(1):55-65. PubMed ID: 25129826 [TBL] [Abstract][Full Text] [Related]
14. Fusarium graminearum Possesses Virulence Factors Common to Fusarium Head Blight of Wheat and Seedling Rot of Soybean but Differing in Their Impact on Disease Severity. Sella L; Gazzetti K; Castiglioni C; Schäfer W; Favaron F Phytopathology; 2014 Nov; 104(11):1201-7. PubMed ID: 24779355 [TBL] [Abstract][Full Text] [Related]
15. Role of the XylA gene, encoding a cell wall degrading enzyme, during common wheat, durum wheat and barley colonization by Fusarium graminearum. Tini F; Beccari G; Benfield AH; Gardiner DM; Covarelli L Fungal Genet Biol; 2020 Mar; 136():103318. PubMed ID: 31841669 [TBL] [Abstract][Full Text] [Related]
16. A tomatinase-like enzyme acts as a virulence factor in the wheat pathogen Fusarium graminearum. Carere J; Benfield AH; Ollivier M; Liu CJ; Kazan K; Gardiner DM Fungal Genet Biol; 2017 Mar; 100():33-41. PubMed ID: 28109774 [TBL] [Abstract][Full Text] [Related]
17. Functional analysis of the Fusarium graminearum phosphatome. Yun Y; Liu Z; Yin Y; Jiang J; Chen Y; Xu JR; Ma Z New Phytol; 2015 Jul; 207(1):119-134. PubMed ID: 25758923 [TBL] [Abstract][Full Text] [Related]
18. Functional evaluation of a homologue of plant rapid alkalinisation factor (RALF) peptides in Fusarium graminearum. Wood AKM; Walker C; Lee WS; Urban M; Hammond-Kosack KE Fungal Biol; 2020 Sep; 124(9):753-765. PubMed ID: 32883427 [TBL] [Abstract][Full Text] [Related]
19. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum. Yu F; Gu Q; Yun Y; Yin Y; Xu JR; Shim WB; Ma Z New Phytol; 2014 Jul; 203(1):219-32. PubMed ID: 24684168 [TBL] [Abstract][Full Text] [Related]
20. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high-osmolarity glycerol signaling pathways. Yun Y; Liu Z; Zhang J; Shim WB; Chen Y; Ma Z Environ Microbiol; 2014 Jul; 16(7):2023-37. PubMed ID: 24237706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]