These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 20447395)

  • 1. Advances in imaging the blood and aqueous vessels of the ocular limbus.
    van der Merwe EL; Kidson SH
    Exp Eye Res; 2010 Aug; 91(2):118-26. PubMed ID: 20447395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Limbal microvasculature of the rat eye.
    Morrison JC; Fraunfelder FW; Milne ST; Moore CG
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):751-6. PubMed ID: 7890506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The three-dimensional organisation of the post-trabecular aqueous outflow pathway and limbal vasculature in the mouse.
    van der Merwe EL; Kidson SH
    Exp Eye Res; 2014 Aug; 125():226-35. PubMed ID: 24979218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of aqueous shunt position and patency using anterior segment optical coherence tomography.
    Sarodia U; Sharkawi E; Hau S; Barton K
    Am J Ophthalmol; 2007 Jun; 143(6):1054-1056. PubMed ID: 17524780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression and properties of wild-type and Tyr437His mutated myocilin in the eyes of transgenic mice.
    Zillig M; Wurm A; Grehn FJ; Russell P; Tamm ER
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):223-34. PubMed ID: 15623777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ocular pharmacokinetics in rabbits using a novel dual probe microdialysis technique.
    Macha S; Mitra AK
    Exp Eye Res; 2001 Mar; 72(3):289-99. PubMed ID: 11180978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ophthalmic fundus imaging: today and beyond.
    Yannuzzi LA; Ober MD; Slakter JS; Spaide RF; Fisher YL; Flower RW; Rosen R
    Am J Ophthalmol; 2004 Mar; 137(3):511-24. PubMed ID: 15013876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.
    van der Merwe EL; Kidson SH
    Exp Eye Res; 2016 May; 146():293-303. PubMed ID: 27068508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression of dominant negative Rho-binding domain of Rho-kinase in organ cultured human eye anterior segments increases aqueous humor outflow.
    Rao PV; Deng P; Maddala R; Epstein DL; Li CY; Shimokawa H
    Mol Vis; 2005 Apr; 11():288-97. PubMed ID: 15889013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filtering bleb functionality: a clinical, anterior segment optical coherence tomography and in vivo confocal microscopy study.
    Ciancaglini M; Carpineto P; Agnifili L; Nubile M; Lanzini M; Fasanella V; Mastropasqua L
    J Glaucoma; 2008; 17(4):308-17. PubMed ID: 18552617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-vivo imaging of the conventional aqueous outflow system.
    Lee D; Kolomeyer NN; Razeghinejad R; Myers JS
    Curr Opin Ophthalmol; 2021 May; 32(3):275-279. PubMed ID: 33653980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular imaging in the eye.
    Eter N
    Br J Ophthalmol; 2010 Nov; 94(11):1420-6. PubMed ID: 19713198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LYVE-1-positive macrophages are present in normal murine eyes.
    Xu H; Chen M; Reid DM; Forrester JV
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):2162-71. PubMed ID: 17460275
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Interrelationship of the hydrodynamics of the eye with the state of the angle of the anterior chamber at various levels of intraocular pressure].
    Fedorova SM
    Vestn Oftalmol; 1973; 2():51-4. PubMed ID: 4754082
    [No Abstract]   [Full Text] [Related]  

  • 15. The critical role of the conjunctiva in glaucoma filtration surgery.
    Yu DY; Morgan WH; Sun X; Su EN; Cringle SJ; Yu PK; House P; Guo W; Yu X
    Prog Retin Eye Res; 2009 Sep; 28(5):303-28. PubMed ID: 19573620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo confocal microscopy and anterior segment optical coherence tomography analysis of the cornea in nephropathic cystinosis.
    Labbé A; Niaudet P; Loirat C; Charbit M; Guest G; Baudouin C
    Ophthalmology; 2009 May; 116(5):870-6. PubMed ID: 19410944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive imaging by optical coherence tomography to monitor retinal degeneration in the mouse.
    Li Q; Timmers AM; Hunter K; Gonzalez-Pola C; Lewin AS; Reitze DH; Hauswirth WW
    Invest Ophthalmol Vis Sci; 2001 Nov; 42(12):2981-9. PubMed ID: 11687546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging tumor angiogenesis with fluorescent proteins.
    Hoffman RM
    APMIS; 2004; 112(7-8):441-9. PubMed ID: 15563308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optical coherence tomography imaging of the anterior chamber angle.
    Radhakrishnan S; Huang D; Smith SD
    Ophthalmol Clin North Am; 2005 Sep; 18(3):375-81, vi. PubMed ID: 16054995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [In vivo study of normal human limbal and central corneas using laser confocal microscope].
    Rong B; Yan XM
    Zhonghua Yan Ke Za Zhi; 2006 Jan; 42(1):17-21. PubMed ID: 16638275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.