These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 20447856)
1. In vitro biocompatibility of titanium alloy discs made using direct metal fabrication. Haslauer CM; Springer JC; Harrysson OL; Loboa EG; Monteiro-Riviere NA; Marcellin-Little DJ Med Eng Phys; 2010 Jul; 32(6):645-52. PubMed ID: 20447856 [TBL] [Abstract][Full Text] [Related]
2. In vitro dermal and epidermal cellular response to titanium alloy implants fabricated with electron beam melting. Springer JC; Harrysson OL; Marcellin-Little DJ; Bernacki SH Med Eng Phys; 2014 Oct; 36(10):1367-72. PubMed ID: 25080895 [TBL] [Abstract][Full Text] [Related]
3. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). Parthasarathy J; Starly B; Raman S; Christensen A J Mech Behav Biomed Mater; 2010 Apr; 3(3):249-59. PubMed ID: 20142109 [TBL] [Abstract][Full Text] [Related]
4. A Comparison of Biocompatibility of a Titanium Alloy Fabricated by Electron Beam Melting and Selective Laser Melting. Wang H; Zhao B; Liu C; Wang C; Tan X; Hu M PLoS One; 2016; 11(7):e0158513. PubMed ID: 27391895 [TBL] [Abstract][Full Text] [Related]
5. In vitro cytotoxicity and surface topography evaluation of additive manufacturing titanium implant materials. Tuomi JT; Björkstrand RV; Pernu ML; Salmi MV; Huotilainen EI; Wolff JE; Vallittu PK; Mäkitie AA J Mater Sci Mater Med; 2017 Mar; 28(3):53. PubMed ID: 28197824 [TBL] [Abstract][Full Text] [Related]
6. Effects of surface finishing conditions on the biocompatibility of a nickel-chromium dental casting alloy. McGinley EL; Coleman DC; Moran GP; Fleming GJ Dent Mater; 2011 Jul; 27(7):637-50. PubMed ID: 21514653 [TBL] [Abstract][Full Text] [Related]
7. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications. Nicula R; Lüthen F; Stir M; Nebe B; Burkel E Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173 [TBL] [Abstract][Full Text] [Related]
8. Long-term biocompatibility and osseointegration of electron beam melted, free-form-fabricated solid and porous titanium alloy: experimental studies in sheep. Palmquist A; Snis A; Emanuelsson L; Browne M; Thomsen P J Biomater Appl; 2013 May; 27(8):1003-16. PubMed ID: 22207608 [TBL] [Abstract][Full Text] [Related]
9. Biocompatibility of corrosion-resistant zeolite coatings for titanium alloy biomedical implants. Bedi RS; Beving DE; Zanello LP; Yan Y Acta Biomater; 2009 Oct; 5(8):3265-71. PubMed ID: 19433139 [TBL] [Abstract][Full Text] [Related]
10. [Corrosion behaviour, metal release and biocompatibility of implant materials coated by TiO2-sol gel chemistry]. Hoffmann B; Kokott A; Shafranska O; Detsch R; Winter S; Eisenbarth E; Peters K; Breme J; Kirkpatrick CJ; Ziegler G Biomed Tech (Berl); 2005 Oct; 50(10):320-9. PubMed ID: 16300047 [TBL] [Abstract][Full Text] [Related]
11. Porous Ti6Al4V scaffold directly fabricating by rapid prototyping: preparation and in vitro experiment. Li JP; de Wijn JR; Van Blitterswijk CA; de Groot K Biomaterials; 2006 Mar; 27(8):1223-35. PubMed ID: 16169073 [TBL] [Abstract][Full Text] [Related]
12. In vitro biocompatibility of an ultrafine grained zirconium. Saldaña L; Méndez-Vilas A; Jiang L; Multigner M; González-Carrasco JL; Pérez-Prado MT; González-Martín ML; Munuera L; Vilaboa N Biomaterials; 2007 Oct; 28(30):4343-54. PubMed ID: 17624424 [TBL] [Abstract][Full Text] [Related]
13. Partially Melted Ti6Al4V Particles Increase Bacterial Adhesion and Inhibit Osteogenic Activity on 3D-printed Implants: An In Vitro Study. Xie K; Guo Y; Zhao S; Wang L; Wu J; Tan J; Yang Y; Wu W; Jiang W; Hao Y Clin Orthop Relat Res; 2019 Dec; 477(12):2772-2782. PubMed ID: 31764350 [TBL] [Abstract][Full Text] [Related]
14. Effect of vanadium released from micro-arc oxidized porous Ti6Al4V on biocompatibility in orthopedic applications. Zhang Y; Xiu P; Jia Z; Zhang T; Yin C; Cheng Y; Cai H; Zhang K; Song C; Leng H; Yuan W; Liu Z Colloids Surf B Biointerfaces; 2018 Sep; 169():366-374. PubMed ID: 29803152 [TBL] [Abstract][Full Text] [Related]
15. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy. Saldaña L; Barranco V; González-Carrasco JL; Rodríguez M; Munuera L; Vilaboa N J Biomed Mater Res A; 2007 May; 81(2):334-46. PubMed ID: 17120220 [TBL] [Abstract][Full Text] [Related]
16. Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts. Ponader S; Vairaktaris E; Heinl P; Wilmowsky CV; Rottmair A; Körner C; Singer RF; Holst S; Schlegel KA; Neukam FW; Nkenke E J Biomed Mater Res A; 2008 Mar; 84(4):1111-9. PubMed ID: 17685409 [TBL] [Abstract][Full Text] [Related]
17. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering. Li Y; Xiong J; Wong CS; Hodgson PD; Wen C Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266 [TBL] [Abstract][Full Text] [Related]
18. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors. de Peppo GM; Palmquist A; Borchardt P; Lennerås M; Hyllner J; Snis A; Lausmaa J; Thomsen P; Karlsson C ScientificWorldJournal; 2012; 2012():646417. PubMed ID: 22262956 [TBL] [Abstract][Full Text] [Related]
19. Activation of human leukocytes on tantalum trabecular metal in comparison to commonly used orthopedic metal implant materials. Schildhauer TA; Peter E; Muhr G; Köller M J Biomed Mater Res A; 2009 Feb; 88(2):332-41. PubMed ID: 18286637 [TBL] [Abstract][Full Text] [Related]
20. Concentration-dependent effects of titanium and aluminium ions released from thermally oxidized Ti6Al4V alloy on human osteoblasts. Saldaña L; Barranco V; García-Alonso MC; Vallés G; Escudero ML; Munuera L; Vilaboa N J Biomed Mater Res A; 2006 May; 77(2):220-9. PubMed ID: 16392123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]