BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 20448102)

  • 1. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux.
    Tian C; Kasiborski B; Koul R; Lammers PJ; Bücking H; Shachar-Hill Y
    Plant Physiol; 2010 Jul; 153(3):1175-87. PubMed ID: 20448102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitrogen transfer in the arbuscular mycorrhizal symbiosis.
    Govindarajulu M; Pfeffer PE; Jin H; Abubaker J; Douds DD; Allen JW; Bücking H; Lammers PJ; Shachar-Hill Y
    Nature; 2005 Jun; 435(7043):819-23. PubMed ID: 15944705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of host NH₄⁺ transporters and GS/GOGAT pathway in arbuscular mycorrhizal rice roots.
    Pérez-Tienda J; Corrêa A; Azcón-Aguilar C; Ferrol N
    Plant Physiol Biochem; 2014 Feb; 75():1-8. PubMed ID: 24361504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GintPDX1 encodes a protein involved in vitamin B6 biosynthesis that is up-regulated by oxidative stress in the arbuscular mycorrhizal fungus Glomus intraradices.
    Benabdellah K; Azcón-Aguilar C; Valderas A; Speziga D; Fitzpatrick TB; Ferrol N
    New Phytol; 2009 Nov; 184(3):682-693. PubMed ID: 19674326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis.
    Fellbaum CR; Gachomo EW; Beesetty Y; Choudhari S; Strahan GD; Pfeffer PE; Kiers ET; Bücking H
    Proc Natl Acad Sci U S A; 2012 Feb; 109(7):2666-71. PubMed ID: 22308426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lead uptake by the symbiotic Daucus carota L.-Glomus intraradices system and its effect on the morphology of extra- and intraradical fungal microstructures.
    Alvarado-López CJ; Dasgupta-Schubert N; Ambriz JE; Arteaga-Velazquez JC; Villegas JA
    Environ Sci Pollut Res Int; 2019 Jan; 26(1):381-391. PubMed ID: 30402695
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur transfer through an arbuscular mycorrhiza.
    Allen JW; Shachar-Hill Y
    Plant Physiol; 2009 Jan; 149(1):549-60. PubMed ID: 18978070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic evidence for the key role of arginine in nitrogen translocation by arbuscular mycorrhizal fungi.
    Cruz C; Egsgaard H; Trujillo C; Ambus P; Requena N; Martins-Loução MA; Jakobsen I
    Plant Physiol; 2007 Jun; 144(2):782-92. PubMed ID: 17142485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of different mineral nitrogen sources (NO3(-)-N vs. NH4(+)-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices-cowpea symbiosis.
    Ngwene B; Gabriel E; George E
    Mycorrhiza; 2013 Feb; 23(2):107-17. PubMed ID: 22810583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system.
    Toussaint JP; St-Arnaud M; Charest C
    Can J Microbiol; 2004 Apr; 50(4):251-60. PubMed ID: 15213749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure-Specific Regulation of Nutrient Transport and Metabolism in Arbuscular Mycorrhizal Fungi.
    Kameoka H; Maeda T; Okuma N; Kawaguchi M
    Plant Cell Physiol; 2019 Oct; 60(10):2272-2281. PubMed ID: 31241164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forms of nitrogen uptake, translocation, and transfer via arbuscular mycorrhizal fungi: a review.
    Jin H; Liu J; Liu J; Huang X
    Sci China Life Sci; 2012 Jun; 55(6):474-82. PubMed ID: 22744177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium.
    Aroca R; Bago A; Sutka M; Paz JA; Cano C; Amodeo G; Ruiz-Lozano JM
    Mol Plant Microbe Interact; 2009 Sep; 22(9):1169-78. PubMed ID: 19656051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi.
    Guether M; Neuhäuser B; Balestrini R; Dynowski M; Ludewig U; Bonfante P
    Plant Physiol; 2009 May; 150(1):73-83. PubMed ID: 19329566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices.
    Pérez-Tienda J; Testillano PS; Balestrini R; Fiorilli V; Azcón-Aguilar C; Ferrol N
    Fungal Genet Biol; 2011 Nov; 48(11):1044-55. PubMed ID: 21907817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid nitrogen transfer in the Sorghum bicolor-Glomus mosseae arbuscular mycorrhizal symbiosis.
    Koegel S; Boller T; Lehmann MF; Wiemken A; Courty PE
    Plant Signal Behav; 2013 Aug; 8(8):. PubMed ID: 23759552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of NH (4) (+) uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis.
    Pérez-Tienda J; Valderas A; Camañes G; García-Agustín P; Ferrol N
    Mycorrhiza; 2012 Aug; 22(6):485-91. PubMed ID: 22752460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal and plant gene expression in the Tulasnella calospora-Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas.
    Fochi V; Chitarra W; Kohler A; Voyron S; Singan VR; Lindquist EA; Barry KW; Girlanda M; Grigoriev IV; Martin F; Balestrini R; Perotto S
    New Phytol; 2017 Jan; 213(1):365-379. PubMed ID: 27859287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability.
    Bücking H; Shachar-Hill Y
    New Phytol; 2005 Mar; 165(3):899-911. PubMed ID: 15720701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont.
    Tisserant E; Kohler A; Dozolme-Seddas P; Balestrini R; Benabdellah K; Colard A; Croll D; Da Silva C; Gomez SK; Koul R; Ferrol N; Fiorilli V; Formey D; Franken P; Helber N; Hijri M; Lanfranco L; Lindquist E; Liu Y; Malbreil M; Morin E; Poulain J; Shapiro H; van Tuinen D; Waschke A; Azcón-Aguilar C; Bécard G; Bonfante P; Harrison MJ; Küster H; Lammers P; Paszkowski U; Requena N; Rensing SA; Roux C; Sanders IR; Shachar-Hill Y; Tuskan G; Young JPW; Gianinazzi-Pearson V; Martin F
    New Phytol; 2012 Feb; 193(3):755-769. PubMed ID: 22092242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.