These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20448297)

  • 1. Mathematical modelling of the cell-depleted peripheral layer in the steady flow of blood in a tube.
    Moyers-Gonzalez MA; Owens RG
    Biorheology; 2010; 47(1):39-71. PubMed ID: 20448297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall.
    Sharan M; Popel AS
    Biorheology; 2001; 38(5-6):415-28. PubMed ID: 12016324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell migration in microvessels.
    Mansour MH; Bressloff NW; Shearman CP
    Biorheology; 2010; 47(1):73-93. PubMed ID: 20448298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of sedimentation of small red blood cell aggregates on blood flow in narrow horizontal tubes.
    Murata T
    Biorheology; 1996; 33(3):267-83. PubMed ID: 8935183
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear analyses of pulsatile blood flow in a cylindrical tube.
    El-Khatib FH; Damiano ER
    Biorheology; 2003; 40(5):503-22. PubMed ID: 12897417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical simulations of pulsatile blood flow using a new constitutive model.
    Fang J; Owens RG
    Biorheology; 2006; 43(5):637-60. PubMed ID: 17047282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood viscosity in tube flow: dependence on diameter and hematocrit.
    Pries AR; Neuhaus D; Gaehtgens P
    Am J Physiol; 1992 Dec; 263(6 Pt 2):H1770-8. PubMed ID: 1481902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New trends in clinical hemorheology: an introduction to the concept of the hemorheological profile.
    Stoltz JF; Donner M
    Schweiz Med Wochenschr Suppl; 1991; 43():41-9. PubMed ID: 1843037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The superposition of steady on oscillatory shear and its effect on the viscoelasticity of human blood and a blood-like model fluid.
    Vlastos G; Lerche D; Koch B
    Biorheology; 1997; 34(1):19-36. PubMed ID: 9176588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of the endothelial-cell glycocalyx on the motion of red blood cells through capillaries.
    Damiano ER
    Microvasc Res; 1998 Jan; 55(1):77-91. PubMed ID: 9473411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Model-independent relationships between hematocrit, blood viscosity, and yield stress derived from Couette viscometry data.
    Yeow YL; Wickramasinghe SR; Leong YK; Han B
    Biotechnol Prog; 2002; 18(5):1068-75. PubMed ID: 12363359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrodynamic interaction between erythrocytes and leukocytes affects rheology of blood in microvessels.
    Pappu V; Bagchi P
    Biorheology; 2007; 44(3):191-215. PubMed ID: 17851167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube.
    Ji HS; Lee SJ
    Clin Hemorheol Microcirc; 2008; 40(1):19-30. PubMed ID: 18791264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blood viscosity modelling: influence of aggregate network dynamics under transient conditions.
    Kaliviotis E; Yianneskis M
    Biorheology; 2011; 48(2):127-47. PubMed ID: 21811017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements.
    Sriram K; Intaglietta M; Tartakovsky DM
    Microcirculation; 2014 Oct; 21(7):628-39. PubMed ID: 24703006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythrocyte transport efficacy of human blood: a rheological point of view.
    Bogar L; Juricskay I; Kesmarky G; Kenyeres P; Toth K
    Eur J Clin Invest; 2005 Nov; 35(11):687-90. PubMed ID: 16269018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mathematical model of blunt injury to the vascular wall via formation of rouleaux and changes in local hemodynamic and rheological factors. Implications for the mechanism of traumatic myocardial infarction.
    Ismailov RM
    Theor Biol Med Model; 2005 Mar; 2():13. PubMed ID: 15799779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mathematical model for blood flow through an arterial bifurcation.
    Tandon PN; Kawahara M; Rana UV
    Int J Biomed Comput; 1994 May; 35(4):309-25. PubMed ID: 8063457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An energy-rate based blood viscosity model incorporating aggregate network dynamics.
    Kaliviotis E; Yianneskis M
    Biorheology; 2009; 46(6):487-508. PubMed ID: 20164632
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of microgravity on microcirculation.
    Majhi SN; Nair VR
    Microgravity Sci Technol; 1990 Sep; 3(2):117-20. PubMed ID: 11541479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.