BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 20448479)

  • 1. Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes.
    Tian R; Wu X; Hagemann TL; Sosunov AA; Messing A; McKhann GM; Goldman JE
    J Neuropathol Exp Neurol; 2010 Apr; 69(4):335-45. PubMed ID: 20448479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oligomers of mutant glial fibrillary acidic protein (GFAP) Inhibit the proteasome system in alexander disease astrocytes, and the small heat shock protein alphaB-crystallin reverses the inhibition.
    Tang G; Perng MD; Wilk S; Quinlan R; Goldman JE
    J Biol Chem; 2010 Apr; 285(14):10527-37. PubMed ID: 20110364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking.
    Hughes EG; Maguire JL; McMinn MT; Scholz RE; Sutherland ML
    Brain Res Mol Brain Res; 2004 May; 124(2):114-23. PubMed ID: 15135219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated GFAP induces astrocyte dysfunction in caudal brain regions: A potential mechanism for hindbrain involved symptoms in type II Alexander disease.
    Minkel HR; Anwer TZ; Arps KM; Brenner M; Olsen ML
    Glia; 2015 Dec; 63(12):2285-97. PubMed ID: 26190408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GFAP Mutations in Astrocytes Impair Oligodendrocyte Progenitor Proliferation and Myelination in an hiPSC Model of Alexander Disease.
    Li L; Tian E; Chen X; Chao J; Klein J; Qu Q; Sun G; Sun G; Huang Y; Warden CD; Ye P; Feng L; Li X; Cui Q; Sultan A; Douvaras P; Fossati V; Sanjana NE; Riggs AD; Shi Y
    Cell Stem Cell; 2018 Aug; 23(2):239-251.e6. PubMed ID: 30075130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship between increase in astrocytic GLT-1 glutamate transport and late-LTP.
    Pita-Almenar JD; Zou S; Colbert CM; Eskin A
    Learn Mem; 2012 Nov; 19(12):615-26. PubMed ID: 23166293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plectin regulates the organization of glial fibrillary acidic protein in Alexander disease.
    Tian R; Gregor M; Wiche G; Goldman JE
    Am J Pathol; 2006 Mar; 168(3):888-97. PubMed ID: 16507904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glial fibrillary acidic protein exhibits altered turnover kinetics in a mouse model of Alexander disease.
    Moody LR; Barrett-Wilt GA; Sussman MR; Messing A
    J Biol Chem; 2017 Apr; 292(14):5814-5824. PubMed ID: 28223355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alexander-disease mutation of GFAP causes filament disorganization and decreased solubility of GFAP.
    Hsiao VC; Tian R; Long H; Der Perng M; Brenner M; Quinlan RA; Goldman JE
    J Cell Sci; 2005 May; 118(Pt 9):2057-65. PubMed ID: 15840648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correspondence regarding: Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes.
    Sechi G; Balbi P; Bachetti T; Ceccherini I
    J Neuropathol Exp Neurol; 2010 Dec; 69(12):1270; author reply 1270-1. PubMed ID: 21107140
    [No Abstract]   [Full Text] [Related]  

  • 11. NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes.
    Lalo U; Pankratov Y; Kirchhoff F; North RA; Verkhratsky A
    J Neurosci; 2006 Mar; 26(10):2673-83. PubMed ID: 16525046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synemin is expressed in reactive astrocytes and Rosenthal fibers in Alexander disease.
    Pekny T; Faiz M; Wilhelmsson U; Curtis MA; Matej R; Skalli O; Pekny M
    APMIS; 2014 Jan; 122(1):76-80. PubMed ID: 23594359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of mutated GFAP aggregates revealed by real-time imaging of an astrocyte model of Alexander disease.
    Mignot C; Delarasse C; Escaich S; Della Gaspera B; Noé E; Colucci-Guyon E; Babinet C; Pekny M; Vicart P; Boespflug-Tanguy O; Dautigny A; Rodriguez D; Pham-Dinh D
    Exp Cell Res; 2007 Aug; 313(13):2766-79. PubMed ID: 17604020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in GFAP Disrupt the Distribution and Function of Organelles in Human Astrocytes.
    Jones JR; Kong L; Hanna MG; Hoffman B; Krencik R; Bradley R; Hagemann T; Choi J; Doers M; Dubovis M; Sherafat MA; Bhattacharyya A; Kendziorski C; Audhya A; Messing A; Zhang SC
    Cell Rep; 2018 Oct; 25(4):947-958.e4. PubMed ID: 30355500
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Murine model of Alexander disease: analysis of GFAP aggregate formation and its pathological significance.
    Tanaka KF; Takebayashi H; Yamazaki Y; Ono K; Naruse M; Iwasato T; Itohara S; Kato H; Ikenaka K
    Glia; 2007 Apr; 55(6):617-31. PubMed ID: 17299771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phenotypic conversions of "protoplasmic" to "reactive" astrocytes in Alexander disease.
    Sosunov AA; Guilfoyle E; Wu X; McKhann GM; Goldman JE
    J Neurosci; 2013 Apr; 33(17):7439-50. PubMed ID: 23616550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alexander disease-associated glial fibrillary acidic protein mutations in mice induce Rosenthal fiber formation and a white matter stress response.
    Hagemann TL; Connor JX; Messing A
    J Neurosci; 2006 Oct; 26(43):11162-73. PubMed ID: 17065456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Alexander disease-causing glial fibrillary acidic protein mutant, R416W, accumulates into Rosenthal fibers by a pathway that involves filament aggregation and the association of alpha B-crystallin and HSP27.
    Der Perng M; Su M; Wen SF; Li R; Gibbon T; Prescott AR; Brenner M; Quinlan RA
    Am J Hum Genet; 2006 Aug; 79(2):197-213. PubMed ID: 16826512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation-prone GFAP mutation in Alexander disease validated using a zebrafish model.
    Lee SH; Nam TS; Kim KH; Kim JH; Yoon W; Heo SH; Kim MJ; Shin BA; Perng MD; Choy HE; Jo J; Kim MK; Choi SY
    BMC Neurol; 2017 Sep; 17(1):175. PubMed ID: 28882119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Beneficial effects of Nrf2 overexpression in a mouse model of Alexander disease.
    LaPash Daniels CM; Austin EV; Rockney DE; Jacka EM; Hagemann TL; Johnson DA; Johnson JA; Messing A
    J Neurosci; 2012 Aug; 32(31):10507-15. PubMed ID: 22855800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.