These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 20448771)

  • 1. Fast minimum variance wavefront reconstruction for extremely large telescopes.
    Thiébaut E; Tallon M
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):1046-59. PubMed ID: 20448771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance comparison of wavefront reconstruction and control algorithms for Extremely Large Telescopes.
    Montilla I; Béchet C; Le Louarn M; Reyes M; Tallon M
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A9-18. PubMed ID: 21045895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preprocessed cumulative reconstructor with domain decomposition: a fast wavefront reconstruction method for pyramid wavefront sensor.
    Shatokhina I; Obereder A; Rosensteiner M; Ramlau R
    Appl Opt; 2013 Apr; 52(12):2640-52. PubMed ID: 23669672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wavefront reconstruction for extremely large telescopes via CuRe with domain decomposition.
    Rosensteiner M
    J Opt Soc Am A Opt Image Sci Vis; 2012 Nov; 29(11):2328-36. PubMed ID: 23201793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational performance comparison of wavefront reconstruction algorithms for the European Extremely Large Telescope on multi-CPU architecture.
    Feng L; Fedrigo E; Béchet C; Brunner E; Pirani W
    Appl Opt; 2012 Jun; 51(16):3564-83. PubMed ID: 22695596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cumulative Reconstructor: fast wavefront reconstruction algorithm for Extremely Large Telescopes.
    Rosensteiner M
    J Opt Soc Am A Opt Image Sci Vis; 2011 Oct; 28(10):2132-8. PubMed ID: 21979519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time turbulence profiling with a pair of laser guide star Shack-Hartmann wavefront sensors for wide-field adaptive optics systems on large to extremely large telescopes.
    Gilles L; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A76-83. PubMed ID: 21045893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distributed Kalman filtering compared to Fourier domain preconditioned conjugate gradient for laser guide star tomography on extremely large telescopes.
    Gilles L; Massioni P; Kulcsár C; Raynaud HF; Ellerbroek B
    J Opt Soc Am A Opt Image Sci Vis; 2013 May; 30(5):898-909. PubMed ID: 23695321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Algorithm and experiment of whole-aperture wavefront reconstruction from annular subaperture Hartmann-Shack gradient data.
    Xu H; Xian H; Zhang Y
    Opt Express; 2010 Jun; 18(13):13431-43. PubMed ID: 20588474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast iterative tomographic wavefront estimation with recursive Toeplitz reconstructor structure for large-scale systems.
    Ono YH; Correia C; Conan R; Blanco L; Neichel B; Fusco T
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1330-1345. PubMed ID: 30110295
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of minimum-norm maximum likelihood and maximum a posteriori wavefront reconstructions for large adaptive optics systems.
    Béchet C; Tallon M; Thiébaut E
    J Opt Soc Am A Opt Image Sci Vis; 2009 Mar; 26(3):497-508. PubMed ID: 19252648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of wavefront sensor models for simulation of adaptive optics.
    Wu Z; Enmark A; Owner-Petersen M; Andersen T
    Opt Express; 2009 Oct; 17(22):20575-83. PubMed ID: 19997286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting the comparison between the Shack-Hartmann and the pyramid wavefront sensors via the Fisher information matrix.
    Plantet C; Meimon S; Conan JM; Fusco T
    Opt Express; 2015 Nov; 23(22):28619-33. PubMed ID: 26561131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iterative wavefront reconstruction for strong turbulence using Shack-Hartmann wavefront sensor measurements.
    Kim JJ; Fernandez B; Agrawal B
    J Opt Soc Am A Opt Image Sci Vis; 2021 Mar; 38(3):456-464. PubMed ID: 33690478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving centroiding by super-resolution reconstruction of sodium layer density in Shack-Hartmann wavefront sensors.
    Mello AJ; Pipa DR
    Appl Opt; 2016 May; 55(14):3701-10. PubMed ID: 27168279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental detection of optical vortices with a Shack-Hartmann wavefront sensor.
    Murphy K; Burke D; Devaney N; Dainty C
    Opt Express; 2010 Jul; 18(15):15448-60. PubMed ID: 20720924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser guide star wavefront sensing for ground-layer adaptive optics on extremely large telescopes.
    Clare RM; Le Louarn M; Béchet C
    Appl Opt; 2011 Feb; 50(4):473-83. PubMed ID: 21283238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast reconstruction and prediction of frozen flow turbulence based on structured Kalman filtering.
    Fraanje R; Rice J; Verhaegen M; Doelman N
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A235-45. PubMed ID: 21045884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential focal anisoplanatism in laser guide star wavefront sensing on extremely large telescopes.
    Muller N; Michau V; Robert C; Rousset G
    Opt Lett; 2011 Oct; 36(20):4071-3. PubMed ID: 22002389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tomography approach for multi-object adaptive optics.
    Vidal F; Gendron E; Rousset G
    J Opt Soc Am A Opt Image Sci Vis; 2010 Nov; 27(11):A253-64. PubMed ID: 21045886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.