BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20448928)

  • 1. Nanoparticle-induced potentiometric biosensing of NADH at copper ion-selective electrodes.
    Chumbimuni-Torres KY; Wang J
    Analyst; 2009 Aug; 134(8):1614-7. PubMed ID: 20448928
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical and electrochemical detection of NADH and of NAD+-dependent biocatalyzed processes by the catalytic deposition of copper on gold nanoparticles.
    Shlyahovsky B; Katz E; Xiao Y; Pavlov V; Willner I
    Small; 2005 Feb; 1(2):213-6. PubMed ID: 17193433
    [No Abstract]   [Full Text] [Related]  

  • 3. Potentiometric biosensing of proteins with ultrasensitive ion-selective microelectrodes and nanoparticle labels.
    Chumbimuni-Torres KY; Dai Z; Rubinova N; Xiang Y; Pretsch E; Wang J; Bakker E
    J Am Chem Soc; 2006 Oct; 128(42):13676-7. PubMed ID: 17044681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrocatalytic oxidation of NADH at gold nanoparticles loaded poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid) film modified electrode and integration of alcohol dehydrogenase for alcohol sensing.
    Manesh KM; Santhosh P; Gopalan A; Lee KP
    Talanta; 2008 Jun; 75(5):1307-14. PubMed ID: 18585217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative studies of mercapto thiadiazoles self-assembled on gold nanoparticle as ionophores for Cu(II) carbon paste sensors.
    Mashhadizadeh MH; Khani H; Foroumadi A; Sagharichi P
    Anal Chim Acta; 2010 Apr; 665(2):208-14. PubMed ID: 20417332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potentiometric detection of DNA hybridization using enzyme-induced metallization and a silver ion selective electrode.
    Wu J; Chumbimuni-Torres KY; Galik M; Thammakhet C; Haake DA; Wang J
    Anal Chem; 2009 Dec; 81(24):10007-12. PubMed ID: 19908886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sub-ppt detection limits for copper ions with Gly-Gly-His modified electrodes.
    Yang W; Jaramillo D; Gooding JJ; Hibbert DB; Zhang R; Willett GD; Fisher KJ
    Chem Commun (Camb); 2001 Oct; (19):1982-3. PubMed ID: 12240250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current-driven ion fluxes of polymeric membrane ion-selective electrode for potentiometric biosensing.
    Ding J; Qin W
    J Am Chem Soc; 2009 Oct; 131(41):14640-1. PubMed ID: 19785410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrochemical biosensor based on DNA tetrahedron/graphene composite film for highly sensitive detection of NADH.
    Li Z; Su W; Liu S; Ding X
    Biosens Bioelectron; 2015 Jul; 69():287-93. PubMed ID: 25770460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ formation of gold nanoparticles in polymer inclusion membrane: Application as platform in a label-free potentiometric immunosensor for Salmonella typhimurium detection.
    Silva NFD; Magalhães JMCS; Barroso MF; Oliva-Teles T; Freire C; Delerue-Matos C
    Talanta; 2019 Mar; 194():134-142. PubMed ID: 30609512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic oxidation and determination of β-NADH using self-assembly hybrid of gold nanoparticles and graphene.
    Chang H; Wu X; Wu C; Chen Y; Jiang H; Wang X
    Analyst; 2011 Jul; 136(13):2735-40. PubMed ID: 21594262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemical biosensor based on integrated assembly of dehydrogenase enzymes and gold nanoparticles.
    Jena BK; Raj CR
    Anal Chem; 2006 Sep; 78(18):6332-9. PubMed ID: 16970306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paper-Based Device for Rapid Visualization of NADH Based on Dissolution of Gold Nanoparticles.
    Liang P; Yu H; Guntupalli B; Xiao Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(27):15023-30. PubMed ID: 26098585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gold Nanoparticles Deposited Polyaniline-TiO2 Nanotube for Surface Plasmon Resonance Enhanced Photoelectrochemical Biosensing.
    Zhu J; Huo X; Liu X; Ju H
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):341-9. PubMed ID: 26673630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of NADH and ethanol based on catalytic activity of soluble carbon nanofiber with low overpotential.
    Wu L; Zhang X; Ju H
    Anal Chem; 2007 Jan; 79(2):453-8. PubMed ID: 17222007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. REAL-TIME PROBING OF THE GROWTH DYNAMICS OF NANOPARTICLES USING POTENTIOMETRIC ION-SELECTIVE ELECTRODES.
    Chumbimuni-Torres KY; Bakker E; Wang J
    Electrochem commun; 2009 Oct; 11(10):1964-1967. PubMed ID: 20161363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrocatalytic oxidation of NADH at electrogenerated NAD+ oxidation product immobilized onto multiwalled carbon nanotubes/ionic liquid nanocomposite: application to ethanol biosensing.
    Teymourian H; Salimi A; Hallaj R
    Talanta; 2012 Feb; 90():91-8. PubMed ID: 22340121
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive amperometric biosensor for determination of NADH and ethanol based on Au-Ag nanoparticles/poly(L-Cysteine)/reduced graphene oxide nanocomposite.
    Aydoğdu Tığ G
    Talanta; 2017 Dec; 175():382-389. PubMed ID: 28842007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time potentiometric sensor; an innovative tool for monitoring hydrolysis of chemo/bio-degradable drugs in pharmaceutical sciences.
    Ma'mun A; Abd El-Rahman MK; Abd El-Kawy M
    J Pharm Biomed Anal; 2018 May; 154():166-173. PubMed ID: 29549855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of enzyme reactions to the charge transfer at the interface of two immiscible solvents.
    Senda M
    EXS; 1997; 80():193-207. PubMed ID: 9002214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.