These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20448928)

  • 61. Gold nanoparticles-enhanced amperometric tyrosinase biosensor based on three-dimensional sol-gel film-modified gold electrodes.
    Li X; Ren T; Wang N; Ji X
    Anal Sci; 2013; 29(4):473-7. PubMed ID: 23574677
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Low potential detection of NADH based on Fe₃O₄ nanoparticles/multiwalled carbon nanotubes composite: fabrication of integrated dehydrogenase-based lactate biosensor.
    Teymourian H; Salimi A; Hallaj R
    Biosens Bioelectron; 2012 Mar; 33(1):60-8. PubMed ID: 22230696
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of nano-layered solid-contact ion selective electrodes by simultaneous potentiometry and quartz crystal microbalance with dissipation.
    Krikstolaityte V; Ding R; Ruzgas T; Björklund S; Lisak G
    Anal Chim Acta; 2020 Sep; 1128():19-30. PubMed ID: 32825902
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A new amplification strategy for ultrasensitive electrochemical aptasensor with network-like thiocyanuric acid/gold nanoparticles.
    Zheng J; Feng W; Lin L; Zhang F; Cheng G; He P; Fang Y
    Biosens Bioelectron; 2007 Oct; 23(3):341-7. PubMed ID: 17583489
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pulsed galvanostatic control of ionophore-based polymeric ion sensors.
    Shvarev A; Bakker E
    Anal Chem; 2003 Sep; 75(17):4541-50. PubMed ID: 14632062
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Potentiometric response and mechanism of anionic recognition of heterocalixarene-based ion selective electrodes.
    Shishkanova TV; Sýkora D; Sessler JL; Král V
    Anal Chim Acta; 2007 Mar; 587(2):247-53. PubMed ID: 17386780
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Pulsed galvanostatic control of a polymeric membrane ion-selective electrode for potentiometric immunoassays.
    Ding J; Wang X; Qin W
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9488-93. PubMed ID: 24015672
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Highly sensitive sensor for detection of NADH based on catalytic growth of Au nanoparticles on glassy carbon electrode.
    Tang L; Zeng G; Shen G; Zhang Y; Li Y; Fan C; Liu C; Niu C
    Anal Bioanal Chem; 2009 Mar; 393(6-7):1677-84. PubMed ID: 19099239
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Dopamine/2-Phenylethylamine Sensitivity of Ion-Selective Electrodes Based on Bifunctional-Symmetrical Boron Receptors.
    Durka M; Durka K; Adamczyk-Woźniak A; Wróblewski W
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642018
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Electrochemical sample matrix elimination for trace-level potentiometric detection with polymeric membrane ion-selective electrodes.
    Chumbimuni-Torres KY; Calvo-Marzal P; Wang J; Bakker E
    Anal Chem; 2008 Aug; 80(15):6114-8. PubMed ID: 18570385
    [TBL] [Abstract][Full Text] [Related]  

  • 71. The phosphate sensor.
    Engblom SO
    Biosens Bioelectron; 1998 Oct; 13(9):981-94. PubMed ID: 9839387
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Development of electrochemical DNA biosensor based on gold nanoparticle modified electrode by electroless deposition.
    Liu S; Liu J; Wang L; Zhao F
    Bioelectrochemistry; 2010 Aug; 79(1):37-42. PubMed ID: 19914151
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 8-hydroxyquinoline based neutral tripodal ionophore as a copper (II) selective electrode and the effect of remote substitutents on electrode properties.
    Mittal SK; Kumar A; Gupta N; Kaur S; Kumar S
    Anal Chim Acta; 2007 Feb; 585(1):161-70. PubMed ID: 17386661
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Direct evidence of ionic fluxes across ion-selective membranes: a scanning electrochemical microscopic and potentiometric study.
    Gyurcsányi RE; Pergel E; Nagy R; Kapui I; Lan BT; Tóth K; Bitter I; Lindner E
    Anal Chem; 2001 May; 73(9):2104-11. PubMed ID: 11354497
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Triggering the redox reaction of cytochrome c on a biomimetic layer and elimination of interferences for NADH detection.
    Lee KS; Won MS; Noh HB; Shim YB
    Biomaterials; 2010 Oct; 31(30):7827-35. PubMed ID: 20659764
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Bioinspired polydopamine as the scaffold for the active AuNPs anchoring and the chemical simultaneously reduced graphene oxide: characterization and the enhanced biosensing application.
    Tian J; Deng SY; Li DL; Shan D; He W; Zhang XJ; Shi Y
    Biosens Bioelectron; 2013 Nov; 49():466-71. PubMed ID: 23811480
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Reactive intermediates-induced potential responses of a polymeric membrane electrode for ultrasensitive potentiometric biosensing.
    Wang X; Qin W
    Chem Commun (Camb); 2012 Apr; 48(34):4073-5. PubMed ID: 22430082
    [TBL] [Abstract][Full Text] [Related]  

  • 78. An amperometric biosensor based on Cu
    Long F; Li W; Chen W; Liu D; Chen Y; Zhou R; Li P
    Nanotechnology; 2019 Nov; 30(48):485706. PubMed ID: 31430735
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact.
    Lai CZ; Fierke MA; Stein A; Bühlmann P
    Anal Chem; 2007 Jun; 79(12):4621-6. PubMed ID: 17508716
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Non-equilibrium potentiometric sensors integrated with metal modified paper-based microfluidic solution sampling substrates for determination of heavy metals in complex environmental samples.
    Silva R; Ahamed A; Cheong YH; Zhao K; Ding R; Lisak G
    Anal Chim Acta; 2022 Mar; 1197():339495. PubMed ID: 35168719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.