These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 20449019)

  • 1. Gas phase fragmentation of protonated betaine and its clusters.
    Wyer JA; Feketeová L; Brøndsted Nielsen S; O'Hair RA
    Phys Chem Chem Phys; 2009 Oct; 11(39):8752-8. PubMed ID: 20449019
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron-induced dissociation of doubly protonated betaine clusters: controlling fragmentation chemistry through electron energy.
    Feketeová L; O'Hair RA
    Rapid Commun Mass Spectrom; 2009 Oct; 23(20):3259-63. PubMed ID: 19764074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and unimolecular chemistry of protonated sulfur betaines, (CH3)2S(+)(CH2)(n)CO2H (n = 1 and 2).
    Yoo EJ; Feketeová L; Khairallah GN; White JM; O'Hair RA
    Org Biomol Chem; 2011 Apr; 9(8):2751-9. PubMed ID: 21359363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unimolecular chemistry of doubly protonated zwitterionic clusters.
    Yoo EJ; Feketeová L; Khairallah GN; O'Hair RA
    J Phys Chem A; 2011 May; 115(17):4179-85. PubMed ID: 21473600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the hydrogen loss from protonated nucleobases after electronic excitation or collisional electron capture.
    Wyer JA; Cederquist H; Haag N; Huber BA; Hvelplund P; Johansson HA; Maisonny R; Brøndsted Nielsen S; Rangama J; Rousseau P; Schmidt HT
    Eur J Mass Spectrom (Chichester); 2009; 15(6):681-8. PubMed ID: 19940334
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of gaseous zwitterion glycine-betaine by slow electrons.
    Kopyra J; Abdoul-Carime H
    J Chem Phys; 2010 May; 132(20):204302. PubMed ID: 20515090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of polypeptide ions with electrons in the gas phase.
    Zubarev RA
    Mass Spectrom Rev; 2003; 22(1):57-77. PubMed ID: 12768604
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protonated urea collision-induced dissociation. Comparison of experiments and chemical dynamics simulations.
    Spezia R; Salpin JY; Gaigeot MP; Hase WL; Song K
    J Phys Chem A; 2009 Dec; 113(50):13853-62. PubMed ID: 19886650
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiply protonated betaine clusters are stable in the gas phase.
    Feketeová L; O'Hair RA
    Chem Commun (Camb); 2008 Oct; (40):4942-4. PubMed ID: 18931746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-capture-induced dissociation of microsolvated di- and tripeptide monocations: elucidation of fragmentation channels from measurements of negative ions.
    Zettergren H; Adoui L; Bernigaud V; Cederquist H; Haag N; Holm AI; Huber BA; Hvelplund P; Johansson H; Kadhane U; Larsen MK; Liu B; Manil B; Brøndsted Nielsen S; Panja S; Rangama J; Reinhed P; Schmidt HT; Støchkel K
    Chemphyschem; 2009 Jul; 10(9-10):1619-23. PubMed ID: 19266530
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dissecting the proline effect: dissociations of proline radicals formed by electron transfer to protonated Pro-Gly and Gly-Pro dipeptides in the gas phase.
    Hayakawa S; Hashimoto M; Matsubara H; Turecek F
    J Am Chem Soc; 2007 Jun; 129(25):7936-49. PubMed ID: 17550253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energetics and dynamics of electron transfer and proton transfer in dissociation of metal(III)(salen)-peptide complexes in the gas phase.
    Laskin J; Yang Z; Chu IK
    J Am Chem Soc; 2008 Mar; 130(10):3218-30. PubMed ID: 18266367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fragmentation reactions of protonated peptides containing glutamine or glutamic acid.
    Harrison AG
    J Mass Spectrom; 2003 Feb; 38(2):174-87. PubMed ID: 12577284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociative excitation energy transfer in the reactions of protonated cysteine and tryptophan with electronically excited singlet molecular oxygen (a1Δ(g)).
    Liu F; Fang Y; Chen Y; Liu J
    J Phys Chem B; 2011 Aug; 115(32):9898-909. PubMed ID: 21761907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competitive fragmentation pathways of acetic acid dimer explored by synchrotron VUV photoionization mass spectrometry and electronic structure calculations.
    Guan J; Hu Y; Zou H; Cao L; Liu F; Shan X; Sheng L
    J Chem Phys; 2012 Sep; 137(12):124308. PubMed ID: 23020332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct dynamics classical trajectory simulations of the O+ + CH4 reaction at hyperthermal energies.
    Sun L; Schatz GC
    J Phys Chem B; 2005 May; 109(17):8431-8. PubMed ID: 16851990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental and theoretical investigations of the inelastic and reactive scattering dynamics of O(3P) collisions with ethane.
    Garton DJ; Minton TK; Hu W; Schatz GC
    J Phys Chem A; 2009 Apr; 113(16):4722-38. PubMed ID: 19334702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissociation of dicarboxylate and disulfonate dianions.
    Ard S; Mirsaleh-Kohan N; Steill JD; Oomens J; Nielsen SB; Compton RN
    J Chem Phys; 2010 Mar; 132(9):094301. PubMed ID: 20210392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reaction of protonated tyrosine with electronically excited singlet molecular oxygen (a1Delta(g)): an experimental and trajectory study.
    Fang Y; Liu J
    J Phys Chem A; 2009 Oct; 113(42):11250-61. PubMed ID: 19780521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Where does the electron go? Electron distribution and reactivity of peptide cation radicals formed by electron transfer in the gas phase.
    Turecek F; Chen X; Hao C
    J Am Chem Soc; 2008 Jul; 130(27):8818-33. PubMed ID: 18597436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.