These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 20449368)

  • 1. Synthesis and applications of electrochemically self-assembled titania nanotube arrays.
    Rani S; Roy SC; Paulose M; Varghese OK; Mor GK; Kim S; Yoriya S; Latempa TJ; Grimes CA
    Phys Chem Chem Phys; 2010 Mar; 12(12):2780-800. PubMed ID: 20449368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MO(x) structures.
    Ghicov A; Schmuki P
    Chem Commun (Camb); 2009 May; (20):2791-808. PubMed ID: 19436878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of anodization parameters on titania nanotube arrays and dye sensitized solar cells.
    Xie ZB; Adams S; Blackwood DJ; Wang J
    Nanotechnology; 2008 Oct; 19(40):405701. PubMed ID: 21832630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High carrier density and capacitance in TiO2 nanotube arrays induced by electrochemical doping.
    Fabregat-Santiago F; Barea EM; Bisquert J; Mor GK; Shankar K; Grimes CA
    J Am Chem Soc; 2008 Aug; 130(34):11312-6. PubMed ID: 18671396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J; Bang JH; Tang C; Kamat PV
    ACS Nano; 2010 Jan; 4(1):387-95. PubMed ID: 20000756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Double-wall anodic titania nanotube arrays for water photooxidation.
    John SE; Mohapatra SK; Misra M
    Langmuir; 2009 Jul; 25(14):8240-7. PubMed ID: 19453126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the surface functionalities of titania nanotube arrays.
    Vasilev K; Poh Z; Kant K; Chan J; Michelmore A; Losic D
    Biomaterials; 2010 Jan; 31(3):532-40. PubMed ID: 19819014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The preparation of highly ordered TiO2 nanotube arrays by an anodization method and their applications.
    Jun Y; Park JH; Kang MG
    Chem Commun (Camb); 2012 Jul; 48(52):6456-71. PubMed ID: 22634750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology.
    Kontos AG; Kontos AI; Tsoukleris DS; Likodimos V; Kunze J; Schmuki P; Falaras P
    Nanotechnology; 2009 Jan; 20(4):045603. PubMed ID: 19417323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TiO2 nanotubes: synthesis and applications.
    Roy P; Berger S; Schmuki P
    Angew Chem Int Ed Engl; 2011 Mar; 50(13):2904-39. PubMed ID: 21394857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transparent, well-aligned TiO(2) nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications.
    Tan LK; Kumar MK; An WW; Gao H
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):498-503. PubMed ID: 20356197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free-standing arrays of isolated TiO2 nanotubes through supercritical fluid drying.
    Deneault JR; Xiao X; Kang TS; Wang JS; Wai CM; Brown GJ; Durstock MF
    Chemphyschem; 2012 Jan; 13(1):256-60. PubMed ID: 22147515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity.
    Sun L; Li J; Wang C; Li S; Lai Y; Chen H; Lin C
    J Hazard Mater; 2009 Nov; 171(1-3):1045-50. PubMed ID: 19632043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays.
    Yin Y; Jin Z; Hou F
    Nanotechnology; 2007 Dec; 18(49):495608. PubMed ID: 20442481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of highly ordered TiO2 nanotube arrays using an organic electrolyte.
    Ruan C; Paulose M; Varghese OK; Mor GK; Grimes CA
    J Phys Chem B; 2005 Aug; 109(33):15754-9. PubMed ID: 16852999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anodic growth of highly ordered TiO2 nanotube arrays to 134 microm in length.
    Paulose M; Shankar K; Yoriya S; Prakasam HE; Varghese OK; Mor GK; LaTempa TJ; Fitzgerald A; Grimes CA
    J Phys Chem B; 2006 Aug; 110(33):16179-84. PubMed ID: 16913737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembled TiO(2) nanotube arrays by anodization of titanium in diethylene glycol: approach to extended pore widening.
    Yoriya S; Grimes CA
    Langmuir; 2010 Jan; 26(1):417-20. PubMed ID: 20038179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.