BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2044943)

  • 1. Evaluation of the dipeptide and oligopeptide permeases of Candida albicans as uptake routes for synthetic anticandidal agents.
    Shallow DA; Barrett-Bee KJ; Payne JW
    FEMS Microbiol Lett; 1991 Mar; 63(1):9-14. PubMed ID: 2044943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide substrates rapidly modulate expression of dipeptide and oligopeptide permeases in Candida albicans.
    Payne JW; Barrett-Bee KJ; Shallow DA
    FEMS Microbiol Lett; 1991 Mar; 63(1):15-20. PubMed ID: 2044936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional reconstitution of a purified proline permease from Candida albicans: interaction with the antifungal cispentacin.
    Jethwaney D; H Fer M; Khaware RK; Prasad R
    Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():397-404. PubMed ID: 9043117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitivity to nikkomycin Z in Candida albicans: role of peptide permeases.
    Yadan JC; Gonneau M; Sarthou P; Le Goffic F
    J Bacteriol; 1984 Dec; 160(3):884-8. PubMed ID: 6389515
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loss-of-Function Mutations in the Dpp and Opp Permeases Render Erwinia amylovora Resistant to Kasugamycin and Blasticidin S.
    Ge Y; Lee JH; Hu B; Zhao Y
    Mol Plant Microbe Interact; 2018 Aug; 31(8):823-832. PubMed ID: 29474798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uptake of pyrimidines and their derivatives into Candida glabrata and Candida albicans.
    Fasoli MO; Kerridge D
    J Gen Microbiol; 1990 Aug; 136(8):1475-81. PubMed ID: 2262788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of action of nikkomycin and the peptide transport system of Candida albicans.
    McCarthy PJ; Troke PF; Gull K
    J Gen Microbiol; 1985 Apr; 131(4):775-80. PubMed ID: 3886837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic properties of yeast lysine permeases coded by genes on multi-copy vectors.
    Sychrová H; Matĕjcková A; Kotyk A
    FEMS Microbiol Lett; 1993 Oct; 113(1):57-61. PubMed ID: 8243983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplicity of peptide permeases in Candida albicans: evidence from novel chromophoric peptides.
    McCarthy PJ; Nisbet LJ; Boehm JC; Kingsbury WD
    J Bacteriol; 1985 Jun; 162(3):1024-9. PubMed ID: 3888953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional differences between heme permeases: Serratia marcescens HemTUV permease exhibits a narrower substrate specificity (restricted to heme) than the Escherichia coli DppABCDF peptide-heme permease.
    Létoffé S; Delepelaire P; Wandersman C
    J Bacteriol; 2008 Mar; 190(6):1866-70. PubMed ID: 18178744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and synthesis of novel imidazole-substituted dipeptide amides as potent and selective inhibitors of Candida albicans myristoylCoA:protein N-myristoyltransferase and identification of related tripeptide inhibitors with mechanism-based antifungal activity.
    Devadas B; Freeman SK; Zupec ME; Lu HF; Nagarajan SR; Kishore NS; Lodge JK; Kuneman DW; McWherter CA; Vinjamoori DV; Getman DP; Gordon JI; Sikorski JA
    J Med Chem; 1997 Aug; 40(16):2609-25. PubMed ID: 9258368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptide uptake in Candida albicans.
    Davies MB
    J Gen Microbiol; 1980 Nov; 121(1):181-6. PubMed ID: 7019386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of T-2307, a novel arylamidine, in Candida albicans.
    Nishikawa H; Yamada E; Shibata T; Uchihashi S; Fan H; Hayakawa H; Nomura N; Mitsuyama J
    J Antimicrob Chemother; 2010 Aug; 65(8):1681-7. PubMed ID: 20513704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling of ABC transporter system - permease proteins from Microcoleus chthonoplastes PCC 7420 for effective binding against secreted aspartyl proteinases in Candida albicans - a therapeutic intervention.
    Manivannan P; Muralitharan G
    Interdiscip Sci; 2014 Mar; 6(1):63-70. PubMed ID: 24464706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the active site of the cyanogenic beta-D-glucosidase (linamarase) from Manihot esculenta Crantz (cassava). I. Evidence for an essential carboxylate and a reactive histidine residue in a single catalytic center.
    Keresztessy Z; Kiss L; Hughes MA
    Arch Biochem Biophys; 1994 Oct; 314(1):142-52. PubMed ID: 7944386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purified arginine permease of Candida albicans is functionally active in a reconstituted system.
    Mukherjee PK; Prasad R
    Yeast; 1998 Mar; 14(4):335-45. PubMed ID: 9559542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effects of Woodward's reagent K on carrier-mediated anion transport in rabbit intestinal brush border membrane vesicles.
    Tam TN; Schron CM
    Zhonghua Yi Xue Za Zhi (Taipei); 1999 Feb; 62(2):98-106. PubMed ID: 10063720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. T-2307, a novel arylamidine, is transported into Candida albicans by a high-affinity spermine and spermidine carrier regulated by Agp2.
    Nishikawa H; Sakagami T; Yamada E; Fukuda Y; Hayakawa H; Nomura N; Mitsuyama J; Miyazaki T; Mukae H; Kohno S
    J Antimicrob Chemother; 2016 Jul; 71(7):1845-55. PubMed ID: 27090633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anti-Candida activity of cispentacin: the active transport by amino acid permeases and possible mechanisms of action.
    Capobianco JO; Zakula D; Coen ML; Goldman RC
    Biochem Biophys Res Commun; 1993 Feb; 190(3):1037-44. PubMed ID: 8439305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal dipeptides incorporating an inhibitor of homoserine dehydrogenase.
    Skwarecki AS; Schielmann M; Martynow D; Kawczyński M; Wiśniewska A; Milewska MJ; Milewski S
    J Pept Sci; 2018 Jan; 24(1):. PubMed ID: 29322651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.