These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20449593)

  • 1. An inducible artificial microRNA system for Chlamydomonas reinhardtii confirms a key role for heat shock factor 1 in regulating thermotolerance.
    Schmollinger S; Strenkert D; Schroda M
    Curr Genet; 2010 Aug; 56(4):383-9. PubMed ID: 20449593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heat shock factor 1 is a key regulator of the stress response in Chlamydomonas.
    Schulz-Raffelt M; Lodha M; Schroda M
    Plant J; 2007 Oct; 52(2):286-95. PubMed ID: 17711413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NIT1 promoter allows inducible and reversible silencing of centrin in Chlamydomonas reinhardtii.
    Koblenz B; Lechtreck KF
    Eukaryot Cell; 2005 Nov; 4(11):1959-62. PubMed ID: 16278463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissecting the heat stress response in Chlamydomonas by pharmaceutical and RNAi approaches reveals conserved and novel aspects.
    Schmollinger S; Schulz-Raffelt M; Strenkert D; Veyel D; Vallon O; Schroda M
    Mol Plant; 2013 Nov; 6(6):1795-813. PubMed ID: 23713078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of chimeric genes by the light-regulated cabII-1 promoter in Chlamydomonas reinhardtii: a cabII-1/nit1 gene functions as a dominant selectable marker in a nit1- nit2- strain.
    Blankenship JE; Kindle KL
    Mol Cell Biol; 1992 Nov; 12(11):5268-79. PubMed ID: 1406696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of the arylsulphatase reporter gene under the control of the nit1 promoter in Chlamydomonas reinhardtii.
    Ohresser M; Matagne RF; Loppes R
    Curr Genet; 1997 Mar; 31(3):264-71. PubMed ID: 9065390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid construction and screening of artificial microRNA systems in Chlamydomonas reinhardtii.
    Hu J; Deng X; Shao N; Wang G; Huang K
    Plant J; 2014 Sep; 79(6):1052-64. PubMed ID: 24974733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter.
    Baurain D; Dinant M; Coosemans N; Matagne RF
    Plant Physiol; 2003 Mar; 131(3):1418-30. PubMed ID: 12644691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional regulation of the Nia1 gene encoding nitrate reductase in Chlamydomonas reinhardtii: effects of various environmental factors on the expression of a reporter gene under the control of the Nia1 promoter.
    Loppes R; Radoux M; Ohresser MC; Matagne RF
    Plant Mol Biol; 1999 Nov; 41(5):701-11. PubMed ID: 10645729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene silencing by artificial microRNAs in Chlamydomonas.
    Zhao T; Wang W; Bai X; Qi Y
    Plant J; 2009 Apr; 58(1):157-64. PubMed ID: 19054364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of dominant-negative effects on the heat shock response in Arabidopsis thaliana by transgenic expression of a chimaeric HSF1 protein fusion construct.
    Wunderlich M; Werr W; Schöffl F
    Plant J; 2003 Aug; 35(4):442-51. PubMed ID: 12904207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The long noncoding RNA
    Lellahi SM; Rosenlund IA; Hedberg A; Kiær LT; Mikkola I; Knutsen E; Perander M
    J Biol Chem; 2018 Dec; 293(49):18965-18976. PubMed ID: 30305397
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1.
    Ostling P; Björk JK; Roos-Mattjus P; Mezger V; Sistonen L
    J Biol Chem; 2007 Mar; 282(10):7077-86. PubMed ID: 17213196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response.
    Trinklein ND; Murray JI; Hartman SJ; Botstein D; Myers RM
    Mol Biol Cell; 2004 Mar; 15(3):1254-61. PubMed ID: 14668476
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Data-driven dynamical model indicates that the heat shock response in
    Magni S; Succurro A; Skupin A; Ebenhöh O
    J R Soc Interface; 2018 May; 15(142):. PubMed ID: 29720454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disruption of the HSF3 gene results in the severe reduction of heat shock gene expression and loss of thermotolerance.
    Tanabe M; Kawazoe Y; Takeda S; Morimoto RI; Nagata K; Nakai A
    EMBO J; 1998 Mar; 17(6):1750-8. PubMed ID: 9501096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli.
    Sandqvist A; Björk JK; Akerfelt M; Chitikova Z; Grichine A; Vourc'h C; Jolly C; Salminen TA; Nymalm Y; Sistonen L
    Mol Biol Cell; 2009 Mar; 20(5):1340-7. PubMed ID: 19129477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of thermotolerance by stress-induced transcription factors in Saccharomyces cerevisiae.
    Yamamoto N; Maeda Y; Ikeda A; Sakurai H
    Eukaryot Cell; 2008 May; 7(5):783-90. PubMed ID: 18359875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitrate signalling on the nitrate reductase gene promoter depends directly on the activity of the nitrate transport systems in Chlamydomonas.
    Llamas A; Igeño MI; Galván A; Fernández E
    Plant J; 2002 May; 30(3):261-71. PubMed ID: 12000675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AIRAP, a new human heat shock gene regulated by heat shock factor 1.
    Rossi A; Trotta E; Brandi R; Arisi I; Coccia M; Santoro MG
    J Biol Chem; 2010 Apr; 285(18):13607-15. PubMed ID: 20185824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.