BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

467 related articles for article (PubMed ID: 20449911)

  • 1. Transthoracic application of electrical cardiopulmonary resuscitation for treatment of cardiac arrest.
    Wang H; Brewer JE; Guan J; Gilman B; Sun S; Li Y; Castillo C; Kroll MW; Weil MH; Tang W
    Crit Care Med; 2008 Nov; 36(11 Suppl):S458-66. PubMed ID: 20449911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The amplitude spectrum area correctly predicts improved resuscitation and facilitated defibrillation with head cooling.
    Tsai MS; Barbut D; Guan J; Bisera J; Inderbitzen B; Weil MH; Tang W
    Crit Care Med; 2008 Nov; 36(11 Suppl):S413-7. PubMed ID: 20449903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal interruption of cardiopulmonary resuscitation for a single shock as mandated by automated external defibrillations does not compromise outcomes in a porcine model of cardiac arrest and resuscitation.
    Ristagno G; Tang W; Russell JK; Jorgenson D; Wang H; Sun S; Weil MH
    Crit Care Med; 2008 Nov; 36(11):3048-53. PubMed ID: 18824916
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is all ventricular fibrillation the same? A comparison of ischemically induced with electrically induced ventricular fibrillation in a porcine cardiac arrest and resuscitation model.
    Niemann JT; Rosborough JP; Youngquist S; Thomas J; Lewis RJ
    Crit Care Med; 2007 May; 35(5):1356-61. PubMed ID: 17414084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemodynamic directed cardiopulmonary resuscitation improves short-term survival from ventricular fibrillation cardiac arrest.
    Friess SH; Sutton RM; Bhalala U; Maltese MR; Naim MY; Bratinov G; Weiland TR; Garuccio M; Nadkarni VM; Becker LB; Berg RA
    Crit Care Med; 2013 Dec; 41(12):2698-704. PubMed ID: 23887237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coronary blood flow produced by muscle contractions induced by intracardiac electrical CPR during ventricular fibrillation.
    Wang H; Tang W; Tsai MS; Sun S; Li Y; Gilman B; Kroll MW; Guan J; Brewer JE; Weil MH
    Pacing Clin Electrophysiol; 2009 Mar; 32 Suppl 1():S223-7. PubMed ID: 19250101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new device producing manual sternal compression with thoracic constraint for cardiopulmonary resuscitation.
    Niemann JT; Rosborough JP; Kassabian L; Salami B
    Resuscitation; 2006 May; 69(2):295-301. PubMed ID: 16457933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of continuous compressions and 30:2 cardiopulmonary resuscitation on global ventilation/perfusion values during resuscitation in a porcine model.
    Wang S; Li C; Ji X; Yang L; Su Z; Wu J
    Crit Care Med; 2010 Oct; 38(10):2024-30. PubMed ID: 20683258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Defibrillation delivered during the upstroke phase of manual chest compression improves shock success.
    Li Y; Wang H; Cho JH; Quan W; Freeman G; Bisera J; Weil MH; Tang W
    Crit Care Med; 2010 Mar; 38(3):910-5. PubMed ID: 20042857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved cerebral perfusion pressures and 24-hr neurological survival in a porcine model of cardiac arrest with active compression-decompression cardiopulmonary resuscitation and augmentation of negative intrathoracic pressure.
    Metzger AK; Herman M; McKnite S; Tang W; Yannopoulos D
    Crit Care Med; 2012 Jun; 40(6):1851-6. PubMed ID: 22487997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sodium nitroprusside-enhanced cardiopulmonary resuscitation improves resuscitation rates after prolonged untreated cardiac arrest in two porcine models.
    Schultz JC; Segal N; Caldwell E; Kolbeck J; McKnite S; Lebedoff N; Zviman M; Aufderheide TP; Yannopoulos D
    Crit Care Med; 2011 Dec; 39(12):2705-10. PubMed ID: 21725236
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blood Pressure- and Coronary Perfusion Pressure-Targeted Cardiopulmonary Resuscitation Improves 24-Hour Survival From Ventricular Fibrillation Cardiac Arrest.
    Naim MY; Sutton RM; Friess SH; Bratinov G; Bhalala U; Kilbaugh TJ; Lampe JW; Nadkarni VM; Becker LB; Berg RA
    Crit Care Med; 2016 Nov; 44(11):e1111-e1117. PubMed ID: 27414479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cold aortic flush and chest compressions enable good neurologic outcome after 15 mins of ventricular fibrillation in cardiac arrest in pigs.
    Janata A; Weihs W; Schratter A; Bayegan K; Holzer M; Frossard M; Sipos W; Springler G; Schmidt P; Sterz F; Losert UM; Laggner AN; Kochanek PM; Behringer W
    Crit Care Med; 2010 Aug; 38(8):1637-43. PubMed ID: 20543671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tourniquet assisted cardiopulmonary resuscitation augments myocardial perfusion in a porcine model of cardiac arrest.
    Yang Z; Tang D; Wu X; Hu X; Xu J; Qian J; Yang M; Tang W
    Resuscitation; 2015 Jan; 86():49-53. PubMed ID: 25447436
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Initial defibrillation versus initial chest compression in a 4-minute ventricular fibrillation canine model of cardiac arrest.
    Wang YL; Zhong JQ; Tao W; Hou XM; Meng XL; Zhang Y
    Crit Care Med; 2009 Jul; 37(7):2250-2. PubMed ID: 19455026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced perfusion during advanced life support improves survival with favorable neurologic function in a porcine model of refractory cardiac arrest.
    Debaty G; Metzger A; Rees J; McKnite S; Puertas L; Yannopoulos D; Lurie K
    Crit Care Med; 2015 May; 43(5):1087-95. PubMed ID: 25756411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved neurological outcome with continuous chest compressions compared with 30:2 compressions-to-ventilations cardiopulmonary resuscitation in a realistic swine model of out-of-hospital cardiac arrest.
    Ewy GA; Zuercher M; Hilwig RW; Sanders AB; Berg RA; Otto CW; Hayes MM; Kern KB
    Circulation; 2007 Nov; 116(22):2525-30. PubMed ID: 17998457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From laboratory science to six emergency medical services systems: New understanding of the physiology of cardiopulmonary resuscitation increases survival rates after cardiac arrest.
    Aufderheide TP; Alexander C; Lick C; Myers B; Romig L; Vartanian L; Stothert J; McKnite S; Matsuura T; Yannopoulos D; Lurie K
    Crit Care Med; 2008 Nov; 36(11 Suppl):S397-404. PubMed ID: 20449900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniaturized mechanical chest compressor improves calculated cerebral perfusion pressure without compromising intracranial pressure during cardiopulmonary resuscitation in a porcine model of cardiac arrest.
    Xu J; Hu X; Yang Z; Wu X; Bisera J; Sun S; Tang W
    Resuscitation; 2014 May; 85(5):683-8. PubMed ID: 24463224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adverse hemodynamic effects of interrupting chest compressions for rescue breathing during cardiopulmonary resuscitation for ventricular fibrillation cardiac arrest.
    Berg RA; Sanders AB; Kern KB; Hilwig RW; Heidenreich JW; Porter ME; Ewy GA
    Circulation; 2001 Nov; 104(20):2465-70. PubMed ID: 11705826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.