BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 20450151)

  • 1. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters.
    Engström K; Nyhlén J; Sandström AG; Bäckvall JE
    J Am Chem Soc; 2010 May; 132(20):7038-42. PubMed ID: 20450151
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning from directed evolution: theoretical investigations into cooperative mutations in lipase enantioselectivity.
    Bocola M; Otte N; Jaeger KE; Reetz MT; Thiel W
    Chembiochem; 2004 Feb; 5(2):214-23. PubMed ID: 14760743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directed evolution of Candida antarctica lipase A using an episomaly replicating yeast plasmid.
    Sandström AG; Engström K; Nyhlén J; Kasrayan A; Bäckvall JE
    Protein Eng Des Sel; 2009 Jul; 22(7):413-20. PubMed ID: 19509064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope.
    Wu Q; Soni P; Reetz MT
    J Am Chem Soc; 2013 Feb; 135(5):1872-81. PubMed ID: 23301759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantioselective lipase-catalyzed ester hydrolysis: effects on rates and enantioselectivity from a variation of the ester structure.
    Bojarski J; Oxelbark J; Andersson C; Allenmark S
    Chirality; 1993; 5(3):154-8. PubMed ID: 8338725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A genetic selection system for evolving enantioselectivity of enzymes.
    Reetz MT; Höbenreich H; Soni P; Fernández L
    Chem Commun (Camb); 2008 Nov; (43):5502-4. PubMed ID: 18997932
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis.
    Prasad S; Bocola M; Reetz MT
    Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives.
    Ammazzalorso A; Amoroso R; Bettoni G; De Filippis B; Fantacuzzi M; Giampietro L; Maccallini C; Tricca ML
    Chirality; 2008 Feb; 20(2):115-8. PubMed ID: 18074337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphing activity between structurally similar enzymes: from heme-free bromoperoxidase to lipase.
    Chen B; Cai Z; Wu W; Huang Y; Pleiss J; Lin Z
    Biochemistry; 2009 Dec; 48(48):11496-504. PubMed ID: 19883129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid.
    Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W
    Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase.
    James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P
    Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity.
    Boersma YL; Pijning T; Bosma MS; van der Sloot AM; Godinho LF; Dröge MJ; Winter RT; van Pouderoyen G; Dijkstra BW; Quax WJ
    Chem Biol; 2008 Aug; 15(8):782-9. PubMed ID: 18721749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations towards enantioselectivity adversely affect secretion of Pseudomonas aeruginosa lipase.
    Hausmann S; Wilhelm S; Jaeger KE; Rosenau F
    FEMS Microbiol Lett; 2008 May; 282(1):65-72. PubMed ID: 18355276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pro-antibiotic substrates for the identification of enantioselective hydrolases.
    Hwang BY; Oh JM; Kim J; Kim BG
    Biotechnol Lett; 2006 Aug; 28(15):1181-5. PubMed ID: 16816894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expanding the substrate scope of enzymes: combining mutations obtained by CASTing.
    Reetz MT; Carballeira JD; Peyralans J; Höbenreich H; Maichele A; Vogel A
    Chemistry; 2006 Aug; 12(23):6031-8. PubMed ID: 16789057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study.
    Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removing the Active-Site Flap in Lipase A from Candida antarctica Produces a Functional Enzyme without Interfacial Activation.
    Wikmark Y; Engelmark Cassimjee K; Lihammar R; Bäckvall JE
    Chembiochem; 2016 Jan; 17(2):141-5. PubMed ID: 26543016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enantiopure derivatives of 1,2-alkanediols: substrate requirements of lipase B from Candida antarctica.
    Jacobsen EE; Hoff BH; Anthonsen T
    Chirality; 2000 Oct; 12(9):654-9. PubMed ID: 10984738
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown.
    Uyanik A; Sen N; Yilmaz M
    Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases.
    Nakagawa Y; Hasegawa A; Hiratake J; Sakata K
    Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.