These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 20450151)
1. Directed evolution of an enantioselective lipase with broad substrate scope for hydrolysis of alpha-substituted esters. Engström K; Nyhlén J; Sandström AG; Bäckvall JE J Am Chem Soc; 2010 May; 132(20):7038-42. PubMed ID: 20450151 [TBL] [Abstract][Full Text] [Related]
2. Learning from directed evolution: theoretical investigations into cooperative mutations in lipase enantioselectivity. Bocola M; Otte N; Jaeger KE; Reetz MT; Thiel W Chembiochem; 2004 Feb; 5(2):214-23. PubMed ID: 14760743 [TBL] [Abstract][Full Text] [Related]
3. Directed evolution of Candida antarctica lipase A using an episomaly replicating yeast plasmid. Sandström AG; Engström K; Nyhlén J; Kasrayan A; Bäckvall JE Protein Eng Des Sel; 2009 Jul; 22(7):413-20. PubMed ID: 19509064 [TBL] [Abstract][Full Text] [Related]
4. Laboratory evolution of enantiocomplementary Candida antarctica lipase B mutants with broad substrate scope. Wu Q; Soni P; Reetz MT J Am Chem Soc; 2013 Feb; 135(5):1872-81. PubMed ID: 23301759 [TBL] [Abstract][Full Text] [Related]
5. Enantioselective lipase-catalyzed ester hydrolysis: effects on rates and enantioselectivity from a variation of the ester structure. Bojarski J; Oxelbark J; Andersson C; Allenmark S Chirality; 1993; 5(3):154-8. PubMed ID: 8338725 [TBL] [Abstract][Full Text] [Related]
6. A genetic selection system for evolving enantioselectivity of enzymes. Reetz MT; Höbenreich H; Soni P; Fernández L Chem Commun (Camb); 2008 Nov; (43):5502-4. PubMed ID: 18997932 [TBL] [Abstract][Full Text] [Related]
7. Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis. Prasad S; Bocola M; Reetz MT Chemphyschem; 2011 Jun; 12(8):1550-7. PubMed ID: 21472964 [TBL] [Abstract][Full Text] [Related]
8. Candida rugosa lipase-catalysed kinetic resolution of 2-substituted-aryloxyacetic esters with dimethylsulfoxide and isopropanol as additives. Ammazzalorso A; Amoroso R; Bettoni G; De Filippis B; Fantacuzzi M; Giampietro L; Maccallini C; Tricca ML Chirality; 2008 Feb; 20(2):115-8. PubMed ID: 18074337 [TBL] [Abstract][Full Text] [Related]
9. Morphing activity between structurally similar enzymes: from heme-free bromoperoxidase to lipase. Chen B; Cai Z; Wu W; Huang Y; Pleiss J; Lin Z Biochemistry; 2009 Dec; 48(48):11496-504. PubMed ID: 19883129 [TBL] [Abstract][Full Text] [Related]
10. Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Piamtongkam R; Duquesne S; Bordes F; Barbe S; André I; Marty A; Chulalaksananukul W Biotechnol Bioeng; 2011 Aug; 108(8):1749-56. PubMed ID: 21391204 [TBL] [Abstract][Full Text] [Related]
11. Insights from molecular dynamics simulations into pH-dependent enantioselective hydrolysis of ibuprofen esters by Candida rugosa lipase. James JJ; Lakshmi BS; Raviprasad V; Ananth MJ; Kangueane P; Gautam P Protein Eng; 2003 Dec; 16(12):1017-24. PubMed ID: 14983082 [TBL] [Abstract][Full Text] [Related]
12. Loop grafting of Bacillus subtilis lipase A: inversion of enantioselectivity. Boersma YL; Pijning T; Bosma MS; van der Sloot AM; Godinho LF; Dröge MJ; Winter RT; van Pouderoyen G; Dijkstra BW; Quax WJ Chem Biol; 2008 Aug; 15(8):782-9. PubMed ID: 18721749 [TBL] [Abstract][Full Text] [Related]
13. Mutations towards enantioselectivity adversely affect secretion of Pseudomonas aeruginosa lipase. Hausmann S; Wilhelm S; Jaeger KE; Rosenau F FEMS Microbiol Lett; 2008 May; 282(1):65-72. PubMed ID: 18355276 [TBL] [Abstract][Full Text] [Related]
14. Pro-antibiotic substrates for the identification of enantioselective hydrolases. Hwang BY; Oh JM; Kim J; Kim BG Biotechnol Lett; 2006 Aug; 28(15):1181-5. PubMed ID: 16816894 [TBL] [Abstract][Full Text] [Related]
15. Expanding the substrate scope of enzymes: combining mutations obtained by CASTing. Reetz MT; Carballeira JD; Peyralans J; Höbenreich H; Maichele A; Vogel A Chemistry; 2006 Aug; 12(23):6031-8. PubMed ID: 16789057 [TBL] [Abstract][Full Text] [Related]
16. Immobilization of Candida rugosa lipase on magnetized Dacron: kinetic study. Pimentel MC; Leāo AB; Melo EH; Ledingham WM; Filho JL; Sivewright M; Kennedy JF Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(2):221-35. PubMed ID: 17453706 [TBL] [Abstract][Full Text] [Related]
17. Removing the Active-Site Flap in Lipase A from Candida antarctica Produces a Functional Enzyme without Interfacial Activation. Wikmark Y; Engelmark Cassimjee K; Lihammar R; Bäckvall JE Chembiochem; 2016 Jan; 17(2):141-5. PubMed ID: 26543016 [TBL] [Abstract][Full Text] [Related]
18. Enantiopure derivatives of 1,2-alkanediols: substrate requirements of lipase B from Candida antarctica. Jacobsen EE; Hoff BH; Anthonsen T Chirality; 2000 Oct; 12(9):654-9. PubMed ID: 10984738 [TBL] [Abstract][Full Text] [Related]
19. Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calix(aza)crown. Uyanik A; Sen N; Yilmaz M Bioresour Technol; 2011 Mar; 102(6):4313-8. PubMed ID: 21256747 [TBL] [Abstract][Full Text] [Related]
20. Engineering of Pseudomonas aeruginosa lipase by directed evolution for enhanced amidase activity: mechanistic implication for amide hydrolysis by serine hydrolases. Nakagawa Y; Hasegawa A; Hiratake J; Sakata K Protein Eng Des Sel; 2007 Jul; 20(7):339-46. PubMed ID: 17616559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]