These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 20451497)

  • 1. Altered microRNAs in STHdh(Q111)/Hdh(Q111) cells: miR-146a targets TBP.
    Sinha M; Ghose J; Das E; Bhattarcharyya NP
    Biochem Biophys Res Commun; 2010 Jun; 396(3):742-7. PubMed ID: 20451497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of miR-146a by RelA/NFkB and p53 in STHdh(Q111)/Hdh(Q111) cells, a cell model of Huntington's disease.
    Ghose J; Sinha M; Das E; Jana NR; Bhattacharyya NP
    PLoS One; 2011; 6(8):e23837. PubMed ID: 21887328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Delayed Cell Cycle Progression in STHdh(Q111)/Hdh(Q111) Cells, a Cell Model for Huntington's Disease Mediated by microRNA-19a, microRNA-146a and microRNA-432.
    Das E; Jana NR; Bhattacharyya NP
    Microrna; 2015; 4(2):86-100. PubMed ID: 26165466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential proteomic and genomic profiling of mouse striatal cell model of Huntington's disease and control; probable implications to the disease biology.
    Choudhury KR; Das S; Bhattacharyya NP
    J Proteomics; 2016 Jan; 132():155-66. PubMed ID: 26581643
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MicroRNA-124 targets CCNA2 and regulates cell cycle in STHdh(Q111)/Hdh(Q111) cells.
    Das E; Jana NR; Bhattacharyya NP
    Biochem Biophys Res Commun; 2013 Jul; 437(2):217-24. PubMed ID: 23796713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impaired mitochondrial dynamics and Nrf2 signaling contribute to compromised responses to oxidative stress in striatal cells expressing full-length mutant huntingtin.
    Jin YN; Yu YV; Gundemir S; Jo C; Cui M; Tieu K; Johnson GV
    PLoS One; 2013; 8(3):e57932. PubMed ID: 23469253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased expression of Bim contributes to the potentiation of serum deprivation-induced apoptotic cell death in Huntington's disease knock-in striatal cell line.
    Kong PJ; Kil MO; Lee H; Kim SS; Johnson GV; Chun W
    Neurol Res; 2009 Feb; 31(1):77-83. PubMed ID: 18691453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased 90-kDa ribosomal S6 kinase (Rsk) activity is protective against mutant huntingtin toxicity.
    Xifró X; Anglada-Huguet M; Rué L; Saavedra A; Pérez-Navarro E; Alberch J
    Mol Neurodegener; 2011 Oct; 6():74. PubMed ID: 22041125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro RNA -214,-150,-146a and-125b target Huntingtin gene.
    Sinha M; Ghose J; Bhattarcharyya NP
    RNA Biol; 2011; 8(6):1005-21. PubMed ID: 22048026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The common inhaled anesthetic isoflurane increases aggregation of huntingtin and alters calcium homeostasis in a cell model of Huntington's disease.
    Wang Q; Liang G; Yang H; Wang S; Eckenhoff MF; Wei H
    Toxicol Appl Pharmacol; 2011 Feb; 250(3):291-8. PubMed ID: 21059370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysregulation of system xc(-) expression induced by mutant huntingtin in a striatal neuronal cell line and in R6/2 mice.
    Frederick NM; Bertho J; Patel KK; Petr GT; Bakradze E; Smith SB; Rosenberg PA
    Neurochem Int; 2014 Oct; 76():59-69. PubMed ID: 25004085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcineurin is involved in the early activation of NMDA-mediated cell death in mutant huntingtin knock-in striatal cells.
    Xifró X; García-Martínez JM; Del Toro D; Alberch J; Pérez-Navarro E
    J Neurochem; 2008 Jun; 105(5):1596-612. PubMed ID: 18221365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Micro RNA-214 contributes to proteasome independent downregulation of beta catenin in Huntington's disease knock-in striatal cell model STHdhQ111/Q111.
    Ghatak S; Raha S
    Biochem Biophys Res Commun; 2015 Apr; 459(3):509-14. PubMed ID: 25747711
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HD CAG-correlated gene expression changes support a simple dominant gain of function.
    Jacobsen JC; Gregory GC; Woda JM; Thompson MN; Coser KR; Murthy V; Kohane IS; Gusella JF; Seong IS; MacDonald ME; Shioda T; Lee JM
    Hum Mol Genet; 2011 Jul; 20(14):2846-60. PubMed ID: 21536587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Searching for mutation in the JPH3, ATN1 and TBP genes in Polish patients suspected of Huntington's disease and without mutation in the IT15 gene.
    Sułek-Piatkowska A; Krysa W; Zdzienicka E; Szirkowiec W; Hoffman-Zacharska D; Rajkiewicz M; Fidziańska E; Kowalska G; Zaremba J
    Neurol Neurochir Pol; 2008; 42(3):203-9. PubMed ID: 18651325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interrogation of brain miRNA and mRNA expression profiles reveals a molecular regulatory network that is perturbed by mutant huntingtin.
    Jin J; Cheng Y; Zhang Y; Wood W; Peng Q; Hutchison E; Mattson MP; Becker KG; Duan W
    J Neurochem; 2012 Nov; 123(4):477-90. PubMed ID: 22906125
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive training modifies disease symptoms in a mouse model of Huntington's disease.
    Yhnell E; Lelos MJ; Dunnett SB; Brooks SP
    Exp Neurol; 2016 Aug; 282():19-26. PubMed ID: 27163546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression, pharmacology and functional activity of adenosine A1 receptors in genetic models of Huntington's disease.
    Ferrante A; Martire A; Pepponi R; Varani K; Vincenzi F; Ferraro L; Beggiato S; Tebano MT; Popoli P
    Neurobiol Dis; 2014 Nov; 71():193-204. PubMed ID: 25132555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional regulation of microRNA-100, -146a, and -150 genes by p53 and NFκB p65/RelA in mouse striatal STHdh(Q7)/ Hdh(Q7) cells and human cervical carcinoma HeLa cells.
    Ghose J; Bhattacharyya NP
    RNA Biol; 2015; 12(4):457-77. PubMed ID: 25757558
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glutamate transporter expression and function in a striatal neuronal model of Huntington's disease.
    Petr GT; Bakradze E; Frederick NM; Wang J; Armsen W; Aizenman E; Rosenberg PA
    Neurochem Int; 2013 Jun; 62(7):973-81. PubMed ID: 23507328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.