These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 20451629)

  • 21. Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity.
    Gutchess AH; Welsh RC; Hedden T; Bangert A; Minear M; Liu LL; Park DC
    J Cogn Neurosci; 2005 Jan; 17(1):84-96. PubMed ID: 15701241
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The encoding of category-specific versus nonspecific information in human inferior temporal cortex.
    Guo B; Meng M
    Neuroimage; 2015 Aug; 116():240-7. PubMed ID: 25869859
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of age and sex on developmental neural networks of visual-spatial attention allocation.
    Rubia K; Hyde Z; Halari R; Giampietro V; Smith A
    Neuroimage; 2010 Jun; 51(2):817-27. PubMed ID: 20188841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decoupling of BOLD amplitude and pattern classification of orientation-selective activity in human visual cortex.
    Albers AM; Meindertsma T; Toni I; de Lange FP
    Neuroimage; 2018 Oct; 180(Pt A):31-40. PubMed ID: 28951159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of aging on encoding of walking direction in the human brain.
    Koch C; Li SC; Polk TA; Schuck NW
    Neuropsychologia; 2020 Apr; 141():107379. PubMed ID: 32088219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural correlates of age-related visual search decline: a combined ERP and sLORETA study.
    Lorenzo-López L; Amenedo E; Pascual-Marqui RD; Cadaveira F
    Neuroimage; 2008 Jun; 41(2):511-24. PubMed ID: 18395470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Decoding complex flow-field patterns in visual working memory.
    Christophel TB; Haynes JD
    Neuroimage; 2014 May; 91():43-51. PubMed ID: 24480302
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigating the consistency of brain activation using individual trial analysis of high-resolution fMRI in the human primary visual cortex.
    Nemani AK; Atkinson IC; Thulborn KR
    Neuroimage; 2009 Oct; 47(4):1417-24. PubMed ID: 19446644
    [TBL] [Abstract][Full Text] [Related]  

  • 29. How learning might strengthen existing visual object representations in human object-selective cortex.
    Brants M; Bulthé J; Daniels N; Wagemans J; Op de Beeck HP
    Neuroimage; 2016 Feb; 127():74-85. PubMed ID: 26658928
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct neural response to visual perspective and body size in the extrastriate body area.
    Carey M; Knight R; Preston C
    Behav Brain Res; 2019 Oct; 372():112063. PubMed ID: 31255673
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dorsal stream development in motion and structure-from-motion perception.
    Klaver P; Lichtensteiger J; Bucher K; Dietrich T; Loenneker T; Martin E
    Neuroimage; 2008 Feb; 39(4):1815-23. PubMed ID: 18096410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex.
    Bressler DW; Silver MA
    Neuroimage; 2010 Nov; 53(2):526-33. PubMed ID: 20600961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The neural representation of objects formed through the spatiotemporal integration of visual transients.
    Erlikhman G; Gurariy G; Mruczek REB; Caplovitz GP
    Neuroimage; 2016 Nov; 142():67-78. PubMed ID: 27033688
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Network segregation varies with neural distinctiveness in sensorimotor cortex.
    Cassady K; Gagnon H; Freiburger E; Lalwani P; Simmonite M; Park DC; Peltier SJ; Taylor SF; Weissman DH; Seidler RD; Polk TA
    Neuroimage; 2020 May; 212():116663. PubMed ID: 32109601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evoked potentials reveal age-related compensatory mechanisms in early visual processing.
    Stothart G; Tales A; Kazanina N
    Neurobiol Aging; 2013 Apr; 34(4):1302-8. PubMed ID: 23046861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cross-modal representations in early visual and auditory cortices revealed by multi-voxel pattern analysis.
    Gu J; Liu B; Li X; Wang P; Wang B
    Brain Imaging Behav; 2020 Oct; 14(5):1908-1920. PubMed ID: 31183774
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Separability of abstract-category and specific-exemplar visual object subsystems: evidence from fMRI pattern analysis.
    McMenamin BW; Deason RG; Steele VR; Koutstaal W; Marsolek CJ
    Brain Cogn; 2015 Feb; 93():54-63. PubMed ID: 25528436
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Visual integration enhances associative memory equally for young and older adults without reducing hippocampal encoding activation.
    Memel M; Ryan L
    Neuropsychologia; 2017 Jun; 100():195-206. PubMed ID: 28456521
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Age-related neural dedifferentiation for individual stimuli: an across-participant pattern similarity analysis.
    Koen JD
    Neuropsychol Dev Cogn B Aging Neuropsychol Cogn; 2022 May; 29(3):552-576. PubMed ID: 35189773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Memorability: A stimulus-driven perceptual neural signature distinctive from memory.
    Bainbridge WA; Dilks DD; Oliva A
    Neuroimage; 2017 Apr; 149():141-152. PubMed ID: 28132932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.