These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 20452327)
1. In vitro effects of direct current electric fields on adipose-derived stromal cells. Hammerick KE; Longaker MT; Prinz FB Biochem Biophys Res Commun; 2010 Jun; 397(1):12-7. PubMed ID: 20452327 [TBL] [Abstract][Full Text] [Related]
2. Regulation of adipose-tissue-derived stromal cell orientation and motility in 2D- and 3D-cultures by direct-current electrical field. Yang G; Long H; Ren X; Ma K; Xiao Z; Wang Y; Guo Y Dev Growth Differ; 2017 Feb; 59(2):70-82. PubMed ID: 28185267 [TBL] [Abstract][Full Text] [Related]
3. A novel electro-chemotactic approach to impact the directional migration of transplantable retinal progenitor cells. Mishra S; Peña JS; Redenti S; Vazquez M Exp Eye Res; 2019 Aug; 185():107688. PubMed ID: 31185219 [TBL] [Abstract][Full Text] [Related]
4. Cellular mechanisms of direct-current electric field effects: galvanotaxis and metastatic disease. Mycielska ME; Djamgoz MB J Cell Sci; 2004 Apr; 117(Pt 9):1631-9. PubMed ID: 15075225 [TBL] [Abstract][Full Text] [Related]
5. Migration responses of outer and inner meniscus cells to applied direct current electric fields. Gunja NJ; Dujari D; Chen A; Luengo A; Fong JV; Hung CT J Orthop Res; 2012 Jan; 30(1):103-11. PubMed ID: 21710605 [TBL] [Abstract][Full Text] [Related]
6. Calcium Ion Flow Permeates Cells through SOCs to Promote Cathode-Directed Galvanotaxis. Guo L; Xu C; Li D; Zheng X; Tang J; Bu J; Sun H; Yang Z; Sun W; Yu X PLoS One; 2015; 10(10):e0139865. PubMed ID: 26447479 [TBL] [Abstract][Full Text] [Related]
7. Lung cancer A549 cells migrate directionally in DC electric fields with polarized and activated EGFRs. Yan X; Han J; Zhang Z; Wang J; Cheng Q; Gao K; Ni Y; Wang Y Bioelectromagnetics; 2009 Jan; 30(1):29-35. PubMed ID: 18618607 [TBL] [Abstract][Full Text] [Related]
8. Pulsed direct current electric fields enhance osteogenesis in adipose-derived stromal cells. Hammerick KE; James AW; Huang Z; Prinz FB; Longaker MT Tissue Eng Part A; 2010 Mar; 16(3):917-31. PubMed ID: 19824802 [TBL] [Abstract][Full Text] [Related]
9. Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field. Sun Y; Do H; Gao J; Zhao R; Zhao M; Mogilner A Curr Biol; 2013 Apr; 23(7):569-74. PubMed ID: 23541726 [TBL] [Abstract][Full Text] [Related]
10. Lymphocyte electrotaxis in vitro and in vivo. Lin F; Baldessari F; Gyenge CC; Sato T; Chambers RD; Santiago JG; Butcher EC J Immunol; 2008 Aug; 181(4):2465-71. PubMed ID: 18684937 [TBL] [Abstract][Full Text] [Related]
11. Neural crest cell galvanotaxis: new data and a novel approach to the analysis of both galvanotaxis and chemotaxis. Gruler H; Nuccitelli R Cell Motil Cytoskeleton; 1991; 19(2):121-33. PubMed ID: 1878979 [TBL] [Abstract][Full Text] [Related]
12. Electric field-directed fibroblast locomotion involves cell surface molecular reorganization and is calcium independent. Brown MJ; Loew LM J Cell Biol; 1994 Oct; 127(1):117-28. PubMed ID: 7929557 [TBL] [Abstract][Full Text] [Related]
13. Keratinocyte galvanotaxis in combined DC and AC electric fields supports an electromechanical transduction sensing mechanism. Hart FX; Laird M; Riding A; Pullar CE Bioelectromagnetics; 2013 Feb; 34(2):85-94. PubMed ID: 22907479 [TBL] [Abstract][Full Text] [Related]
14. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields. Babona-Pilipos R; Droujinine IA; Popovic MR; Morshead CM PLoS One; 2011; 6(8):e23808. PubMed ID: 21909360 [TBL] [Abstract][Full Text] [Related]
15. Melanocytes do not migrate directionally in physiological DC electric fields. Grahn JC; Reilly DA; Nuccitelli RL; Isseroff RR Wound Repair Regen; 2003; 11(1):64-70. PubMed ID: 12581428 [TBL] [Abstract][Full Text] [Related]
16. Effects of steady electric fields on human retinal pigment epithelial cell orientation and migration in culture. Sulik GL; Soong HK; Chang PC; Parkinson WC; Elner SG; Elner VM Acta Ophthalmol (Copenh); 1992 Feb; 70(1):115-22. PubMed ID: 1557964 [TBL] [Abstract][Full Text] [Related]
17. Input-output relationship in galvanotactic response of Dictyostelium cells. Sato MJ; Ueda M; Takagi H; Watanabe TM; Yanagida T; Ueda M Biosystems; 2007 Apr; 88(3):261-72. PubMed ID: 17184899 [TBL] [Abstract][Full Text] [Related]
18. Electric field as a potential directional cue in homing of bone marrow-derived mesenchymal stem cells to cutaneous wounds. Zimolag E; Borowczyk-Michalowska J; Kedracka-Krok S; Skupien-Rabian B; Karnas E; Lasota S; Sroka J; Drukala J; Madeja Z Biochim Biophys Acta Mol Cell Res; 2017 Feb; 1864(2):267-279. PubMed ID: 27864076 [TBL] [Abstract][Full Text] [Related]
19. Regulation of tissue repair and regeneration by electric fields. Wang ET; Zhao M Chin J Traumatol; 2010 Feb; 13(1):55-61. PubMed ID: 20109370 [TBL] [Abstract][Full Text] [Related]
20. Statistical and fractal analyses of rat prostate cancer cell motility in a direct current electric field: comparison of strongly and weakly metastatic cells. Siwy Z; Mycielska ME; Djamgoz MB Eur Biophys J; 2003 Mar; 32(1):12-21. PubMed ID: 12632202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]