BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 20452337)

  • 1. Galangin, a flavonol derived from Rhizoma Alpiniae Officinarum, inhibits acetylcholinesterase activity in vitro.
    Guo AJ; Xie HQ; Choi RC; Zheng KY; Bi CW; Xu SL; Dong TT; Tsim KW
    Chem Biol Interact; 2010 Sep; 187(1-3):246-8. PubMed ID: 20452337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential antioxidant, α-glucosidase, butyrylcholinesterase and acetylcholinesterase inhibitory activities of major constituents isolated from
    Al Garni HA; El-Halawany AM; Koshak AE; Malebari AM; Alzain AA; Mohamed GA; Ibrahim SRM; El-Sayed NS; Abdallah HM
    SAR QSAR Environ Res; 2024 May; 35(5):391-410. PubMed ID: 38769919
    [No Abstract]   [Full Text] [Related]  

  • 3. Anti-acetylcholinesterase activities of traditional Chinese medicine for treating Alzheimer's disease.
    Lin HQ; Ho MT; Lau LS; Wong KK; Shaw PC; Wan DC
    Chem Biol Interact; 2008 Sep; 175(1-3):352-4. PubMed ID: 18573242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melanogenesis inhibitors from the rhizomes of Alpinia officinarum in B16 melanoma cells.
    Matsuda H; Nakashima S; Oda Y; Nakamura S; Yoshikawa M
    Bioorg Med Chem; 2009 Aug; 17(16):6048-53. PubMed ID: 19615910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design, synthesis and evaluation of flavonoid derivatives as potent AChE inhibitors.
    Sheng R; Lin X; Zhang J; Chol KS; Huang W; Yang B; He Q; Hu Y
    Bioorg Med Chem; 2009 Sep; 17(18):6692-8. PubMed ID: 19692250
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Acetylcholinesterase (AChE): A Potential Therapeutic Target to Treat Alzheimer's Disease.
    Li Y; Zhang XX; Jiang LJ; Yuan L; Cao TT; Li X; Dong L; Li Y; Yin SF
    Chem Biol Drug Des; 2015 Oct; 86(4):776-82. PubMed ID: 25736722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reversing β-lactam antibiotic resistance of Staphylococcus aureus with galangin from Alpinia officinarum Hance and synergism with ceftazidime.
    Eumkeb G; Sakdarat S; Siriwong S
    Phytomedicine; 2010 Dec; 18(1):40-5. PubMed ID: 21036573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anticholinesterase activity of 7-methoxyflavones isolated from Kaempferia parviflora.
    Sawasdee P; Sabphon C; Sitthiwongwanit D; Kokpol U
    Phytother Res; 2009 Dec; 23(12):1792-4. PubMed ID: 19548291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Inhibitory effect of icariin on acetylcholinesterase].
    Zhang YD; Cai YN; Zhang Q; Qi ZL; Gao QQ
    Yao Xue Xue Bao; 2012 Sep; 47(9):1141-6. PubMed ID: 23227542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The study on Rhizoma Alpiniae officinarum and other herbs as penetration enhancer for the permeation of 5-fluorouacil].
    Shen Q; Li W; Xu L
    Zhong Yao Cai; 2000 Nov; 23(11):697-9. PubMed ID: 12575262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Co-administration of memantine has no effect on the in vitro or ex vivo determined acetylcholinesterase inhibition of rivastigmine in the rat brain.
    Enz A; Gentsch C
    Neuropharmacology; 2004 Sep; 47(3):408-13. PubMed ID: 15275830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholinesterases inhibition studies of biological active compounds from the rhizomes of Alpinia officinarum Hance and in silico molecular dynamics.
    Lee JS; Kim JH; Han YK; Ma JY; Kim YH; Li W; Yang SY
    Int J Biol Macromol; 2018 Dec; 120(Pt B):2442-2447. PubMed ID: 30193916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolation of cholinesterase-inhibiting flavonoids from Morus lhou.
    Kim JY; Lee WS; Kim YS; Curtis-Long MJ; Lee BW; Ryu YB; Park KH
    J Agric Food Chem; 2011 May; 59(9):4589-96. PubMed ID: 21434689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolates from Alpinia officinarum Hance attenuate LPS-induced inflammation in HepG2: Evidence from in silico and in vitro studies.
    Elgazar AA; Selim NM; Abdel-Hamid NM; El-Magd MA; El Hefnawy HM
    Phytother Res; 2018 Jul; 32(7):1273-1288. PubMed ID: 29468851
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steroidal alkaloids from Holarrhena antidysenterica as acetylcholinesterase inhibitors and the investigation for structure-activity relationships.
    Yang ZD; Duan DZ; Xue WW; Yao XJ; Li S
    Life Sci; 2012 Jun; 90(23-24):929-33. PubMed ID: 22569298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Study on the chemical components of Alpinia officinarum].
    Luo H; Cai C; Zhang J; Mo L
    Zhong Yao Cai; 1998 Jul; 21(7):349-51. PubMed ID: 12569857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 2-(2-phenylethyl)chromone derivatives in Chinese agarwood "Qi-Nan" from Aquilaria sinensis.
    Yang DL; Mei WL; Zeng YB; Guo ZK; Zhao YX; Wang H; Zuo WJ; Dong WH; Wang QH; Dai HF
    Planta Med; 2013 Sep; 79(14):1329-34. PubMed ID: 23929247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of traditional European herbal medicines for acetylcholinesterase and butyrylcholinesterase inhibitory activity.
    Wszelaki N; Kuciun A; Kiss AK
    Acta Pharm; 2010 Mar; 60(1):119-28. PubMed ID: 20228046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new 2-(2-phenylethyl)chromone derivative in Chinese agarwood 'Qi-Nan' from Aquilaria sinensis.
    Yang DL; Wang H; Guo ZK; Dong WH; Mei WL; Dai HF
    J Asian Nat Prod Res; 2014; 16(7):770-6. PubMed ID: 24646200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetylcholinesterase inhibition by flavonoids from Agrimonia pilosa.
    Jung M; Park M
    Molecules; 2007 Sep; 12(9):2130-9. PubMed ID: 17962731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.