BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 20452337)

  • 41. Screening of selected Indian medicinal plants for acetylcholinesterase inhibitory activity.
    Vinutha B; Prashanth D; Salma K; Sreeja SL; Pratiti D; Padmaja R; Radhika S; Amit A; Venkateshwarlu K; Deepak M
    J Ethnopharmacol; 2007 Jan; 109(2):359-63. PubMed ID: 16950584
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cytotoxic activities of flavonoids from two Scutellaria plants in Chinese medicine.
    Sonoda M; Nishiyama T; Matsukawa Y; Moriyasu M
    J Ethnopharmacol; 2004 Mar; 91(1):65-8. PubMed ID: 15036470
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects.
    Khan H; Marya ; Amin S; Kamal MA; Patel S
    Biomed Pharmacother; 2018 May; 101():860-870. PubMed ID: 29635895
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition.
    Adhami HR; Farsam H; Krenn L
    Phytother Res; 2011 Aug; 25(8):1148-52. PubMed ID: 21287652
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Natural products as sources of new lead compounds for the treatment of Alzheimer's disease.
    Huang L; Su T; Li X
    Curr Top Med Chem; 2013; 13(15):1864-78. PubMed ID: 23931437
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effects of switching from an AChE inhibitor to a dual AChE-BuChE inhibitor in patients with Alzheimer's disease.
    Bartorelli L; Giraldi C; Saccardo M; Cammarata S; Bottini G; Fasanaro AM; Trequattrini A;
    Curr Med Res Opin; 2005 Nov; 21(11):1809-18. PubMed ID: 16307702
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and biological evaluation of helicid analogues as novel acetylcholinesterase inhibitors.
    Wen H; Lin C; Que L; Ge H; Ma L; Cao R; Wan Y; Peng W; Wang Z; Song H
    Eur J Med Chem; 2008 Jan; 43(1):166-73. PubMed ID: 17574306
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Flavonoids as acetylcholinesterase inhibitors.
    Uriarte-Pueyo I; Calvo MI
    Curr Med Chem; 2011; 18(34):5289-302. PubMed ID: 22087826
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Inhibitory effects of sinapine on activity of acetylcholinesterase in cerebral homogenate and blood serum of rats].
    He L; Li HT; Guo SW; Liu LF; Qiu JB; Li F; Cai BC
    Zhongguo Zhong Yao Za Zhi; 2008 Apr; 33(7):813-5. PubMed ID: 18589789
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient method for high-throughput virtual screening based on flexible docking: discovery of novel acetylcholinesterase inhibitors.
    Mizutani MY; Itai A
    J Med Chem; 2004 Sep; 47(20):4818-28. PubMed ID: 15369385
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cholinesterase inhibitors modify the activity of intrinsic cardiac neurons.
    Darvesh S; Arora RC; Martin E; Magee D; Hopkins DA; Armour JA
    Exp Neurol; 2004 Aug; 188(2):461-70. PubMed ID: 15246845
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Brain levels and acetylcholinesterase inhibition with galantamine and donepezil in rats, mice, and rabbits.
    Geerts H; Guillaumat PO; Grantham C; Bode W; Anciaux K; Sachak S
    Brain Res; 2005 Feb; 1033(2):186-93. PubMed ID: 15694923
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pharmacological evaluation of novel Alzheimer's disease therapeutics: acetylcholinesterase inhibitors related to galanthamine.
    Bores GM; Huger FP; Petko W; Mutlib AE; Camacho F; Rush DK; Selk DE; Wolf V; Kosley RW; Davis L; Vargas HM
    J Pharmacol Exp Ther; 1996 May; 277(2):728-38. PubMed ID: 8627552
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Flavonoids from rhizome of Alpinia tonkinensis].
    Zhang J; Guo QH; Kong LY
    Zhongguo Zhong Yao Za Zhi; 2003 Jan; 28(1):41-3. PubMed ID: 15015265
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and acetylcholinesterase inhibition of derivatives of huperzine B.
    Feng S; Xia Y; Han D; Zheng C; He X; Tang X; Bai D
    Bioorg Med Chem Lett; 2005 Feb; 15(3):523-6. PubMed ID: 15664805
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation.
    Bolognesi ML; Andrisano V; Bartolini M; Banzi R; Melchiorre C
    J Med Chem; 2005 Jan; 48(1):24-7. PubMed ID: 15633997
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Synthesis and AchE inhibitory activity of 2-phenoxy-indan-1-one derivatives].
    Sheng R; Lin X; Li JY; Hu YZ
    Yao Xue Xue Bao; 2006 Feb; 41(2):115-20. PubMed ID: 16671539
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 5,6,7,8-Tetrahydro-2-(2-phenylethyl)chromones from artificial agarwood of Aquilaria sinensis and their inhibitory activity against acetylcholinesterase.
    Liao G; Mei WL; Kong FD; Li W; Yuan JZ; Dai HF
    Phytochemistry; 2017 Jul; 139():98-108. PubMed ID: 28433955
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Design, synthesis and biological evaluation of novel dual inhibitors of acetylcholinesterase and beta-secretase.
    Zhu Y; Xiao K; Ma L; Xiong B; Fu Y; Yu H; Wang W; Wang X; Hu D; Peng H; Li J; Gong Q; Chai Q; Tang X; Zhang H; Li J; Shen J
    Bioorg Med Chem; 2009 Feb; 17(4):1600-13. PubMed ID: 19162488
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular modeling, docking and ADMET studies applied to the design of a novel hybrid for treatment of Alzheimer's disease.
    da Silva CH; Campo VL; Carvalho I; Taft CA
    J Mol Graph Model; 2006 Oct; 25(2):169-75. PubMed ID: 16413803
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.