These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 20452606)
1. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions. Huhn C; Pyell U J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606 [TBL] [Abstract][Full Text] [Related]
2. Field-amplified sample stacking for the detection of chemical warfare agent degradation products in low-conductivity matrices by capillary electrophoresis-mass spectrometry. Lagarrigue M; Bossée A; Bégos A; Delaunay N; Varenne A; Gareil P; Bellier B J Chromatogr A; 2008 Jan; 1178(1-2):239-47. PubMed ID: 18068179 [TBL] [Abstract][Full Text] [Related]
3. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations. Maynes D; Tenny J; Webbd BW; Lee ML Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632 [TBL] [Abstract][Full Text] [Related]
5. Optimizing band width and resolution in micro-free flow electrophoresis. Fonslow BR; Bowser MT Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812 [TBL] [Abstract][Full Text] [Related]
6. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug. Šesták J; Thormann W J Chromatogr A; 2017 Aug; 1512():124-132. PubMed ID: 28712552 [TBL] [Abstract][Full Text] [Related]
7. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent. Palonen S; Porras SP; Jussila M; Riekkola ML Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786 [TBL] [Abstract][Full Text] [Related]
8. Electroosmotic flow-balanced isotachophoretic stacking with continuous electrokinetic injection for the concentration of anions in high conductivity samples. Breadmore MC J Chromatogr A; 2010 Jun; 1217(24):3900-6. PubMed ID: 20451208 [TBL] [Abstract][Full Text] [Related]
9. Sample stacking in CZE using dynamic thermal junctions I. Analytes with low dpKa/dT crossing a single thermally induced pH junction in a BGE with high dpH/dT. Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL Electrophoresis; 2009 May; 30(9):1501-9. PubMed ID: 19350541 [TBL] [Abstract][Full Text] [Related]
10. Field amplified separation in capillary electrophoresis: a capillary electrophoresis mode. Erny GL; Cifuentes A Anal Chem; 2006 Nov; 78(21):7557-62. PubMed ID: 17073426 [TBL] [Abstract][Full Text] [Related]
11. Sample stacking in CZE using dynamic thermal junctions II: analytes with high dpKa/dT crossing a single thermal junction in a BGE with low dpH/dT. Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL Electrophoresis; 2009 May; 30(9):1510-5. PubMed ID: 19350542 [TBL] [Abstract][Full Text] [Related]
12. Highly sensitive oligosaccharide analysis in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump. Kawai T; Watanabe M; Sueyoshi K; Kitagawa F; Otsuka K J Chromatogr A; 2012 Apr; 1232():52-8. PubMed ID: 21963178 [TBL] [Abstract][Full Text] [Related]
13. 100,000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under field amplified conditions. Breadmore MC; Quirino JP Anal Chem; 2008 Aug; 80(16):6373-81. PubMed ID: 18627177 [TBL] [Abstract][Full Text] [Related]
14. Temperature gradient focusing with field-amplified continuous sample injection for dual-stage analyte enrichment and separation. Munson MS; Danger G; Shackman JG; Ross D Anal Chem; 2007 Aug; 79(16):6201-7. PubMed ID: 17616169 [TBL] [Abstract][Full Text] [Related]
15. Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis. Hirokawa T; Ikuta N; Yoshiyama T; Okamoto H Electrophoresis; 2001 Oct; 22(16):3444-8. PubMed ID: 11669524 [TBL] [Abstract][Full Text] [Related]
17. Eigenmobilities in background electrolytes for capillary zone electrophoresis: III. Linear theory of electromigration. Stĕdrý M; Jaros M; Hruska V; Gas B Electrophoresis; 2004 Oct; 25(18-19):3071-9. PubMed ID: 15472980 [TBL] [Abstract][Full Text] [Related]
18. Sweeping as a multistep enrichment process in micellar electrokinetic chromatography: the retention factor gradient effect. El-Awady M; Pyell U J Chromatogr A; 2013 Jul; 1297():213-25. PubMed ID: 23726349 [TBL] [Abstract][Full Text] [Related]
19. Pressure-assisted electrokinetic injection stacking for verteporfin drug to achieve highly sensitive enantioseparation and detection in artificial urine by capillary electrophoresis. Xu Z; Li A; Wang Y; Chen Z; Hirokawa T J Chromatogr A; 2014 Aug; 1355():284-90. PubMed ID: 24951290 [TBL] [Abstract][Full Text] [Related]
20. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis. Porras SP; Marziali E; Gas B; Kenndler E Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]