BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 20452606)

  • 1. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Field-amplified sample stacking for the detection of chemical warfare agent degradation products in low-conductivity matrices by capillary electrophoresis-mass spectrometry.
    Lagarrigue M; Bossée A; Bégos A; Delaunay N; Varenne A; Gareil P; Bellier B
    J Chromatogr A; 2008 Jan; 1178(1-2):239-47. PubMed ID: 18068179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling behavior in on-chip field-amplified sample stacking.
    Dubey K; Gupta A; Bahga SS
    Electrophoresis; 2019 Mar; 40(5):730-739. PubMed ID: 30628102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into head-column field-amplified sample stacking: Part II. Study of the behavior of the electrophoretic system after electrokinetic injection of cationic compounds across a short water plug.
    Šesták J; Thormann W
    J Chromatogr A; 2017 Aug; 1512():124-132. PubMed ID: 28712552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peak dispersion and contributions to plate height in nonaqueous capillary electrophoresis at high electric field strengths: propanol as background electrolyte solvent.
    Palonen S; Porras SP; Jussila M; Riekkola ML
    Electrophoresis; 2003 May; 24(10):1565-76. PubMed ID: 12761786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroosmotic flow-balanced isotachophoretic stacking with continuous electrokinetic injection for the concentration of anions in high conductivity samples.
    Breadmore MC
    J Chromatogr A; 2010 Jun; 1217(24):3900-6. PubMed ID: 20451208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sample stacking in CZE using dynamic thermal junctions I. Analytes with low dpKa/dT crossing a single thermally induced pH junction in a BGE with high dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1501-9. PubMed ID: 19350541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field amplified separation in capillary electrophoresis: a capillary electrophoresis mode.
    Erny GL; Cifuentes A
    Anal Chem; 2006 Nov; 78(21):7557-62. PubMed ID: 17073426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sample stacking in CZE using dynamic thermal junctions II: analytes with high dpKa/dT crossing a single thermal junction in a BGE with low dpH/dT.
    Mandaji M; Rübensam G; Hoff RB; Hillebrand S; Carrilho E; Kist TL
    Electrophoresis; 2009 May; 30(9):1510-5. PubMed ID: 19350542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly sensitive oligosaccharide analysis in capillary electrophoresis using large-volume sample stacking with an electroosmotic flow pump.
    Kawai T; Watanabe M; Sueyoshi K; Kitagawa F; Otsuka K
    J Chromatogr A; 2012 Apr; 1232():52-8. PubMed ID: 21963178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 100,000-fold concentration of anions in capillary zone electrophoresis using electroosmotic flow controlled counterflow isotachophoretic stacking under field amplified conditions.
    Breadmore MC; Quirino JP
    Anal Chem; 2008 Aug; 80(16):6373-81. PubMed ID: 18627177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature gradient focusing with field-amplified continuous sample injection for dual-stage analyte enrichment and separation.
    Munson MS; Danger G; Shackman JG; Ross D
    Anal Chem; 2007 Aug; 79(16):6201-7. PubMed ID: 17616169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change of migration time and separation window accompanied by field-enhanced sample stacking in capillary zone electrophoresis.
    Hirokawa T; Ikuta N; Yoshiyama T; Okamoto H
    Electrophoresis; 2001 Oct; 22(16):3444-8. PubMed ID: 11669524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography.
    Quirino JP
    J Chromatogr A; 2008 Dec; 1214(1-2):171-7. PubMed ID: 18990396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eigenmobilities in background electrolytes for capillary zone electrophoresis: III. Linear theory of electromigration.
    Stĕdrý M; Jaros M; Hruska V; Gas B
    Electrophoresis; 2004 Oct; 25(18-19):3071-9. PubMed ID: 15472980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sweeping as a multistep enrichment process in micellar electrokinetic chromatography: the retention factor gradient effect.
    El-Awady M; Pyell U
    J Chromatogr A; 2013 Jul; 1297():213-25. PubMed ID: 23726349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure-assisted electrokinetic injection stacking for verteporfin drug to achieve highly sensitive enantioseparation and detection in artificial urine by capillary electrophoresis.
    Xu Z; Li A; Wang Y; Chen Z; Hirokawa T
    J Chromatogr A; 2014 Aug; 1355():284-90. PubMed ID: 24951290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.