BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 20452612)

  • 1. Glucose-induced intestinal vasodilation via adenosine A1 receptors requires nitric oxide but not K(+)(ATP) channels.
    Matheson PJ; Li N; Harris PD; Zakaria el R; Garrison RN
    J Surg Res; 2011 Jun; 168(2):179-87. PubMed ID: 20452612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of adenosine receptor subtypes in rat jejunum in unfed state versus glucose-induced hyperemia.
    Li N; Harris PD; Zakaria el R; Matheson PJ; Garrison RN
    J Surg Res; 2007 May; 139(1):51-60. PubMed ID: 17291535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular mechanisms of peritoneal dialysis-induced microvascular vasodilation.
    Zakaria el R; Althani A; Fawzi AA; Fituri OM
    Adv Perit Dial; 2014; 30():98-109. PubMed ID: 25338430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine.
    Hein TW; Yuan Z; Rosa RH; Kuo L
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2113-9. PubMed ID: 15914631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predominant role of A1 adenosine receptors in mediating adenosine induced vasodilatation of rat diaphragmatic arterioles: involvement of nitric oxide and the ATP-dependent K+ channels.
    Danialou G; Vicaut E; Sambe A; Aubier M; Boczkowski J
    Br J Pharmacol; 1997 Aug; 121(7):1355-63. PubMed ID: 9257914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen sensing and conducted vasomotor responses in mouse cremaster arterioles in situ.
    Ngo AT; Jensen LJ; Riemann M; Holstein-Rathlou NH; Torp-Pedersen C
    Pflugers Arch; 2010 Jun; 460(1):41-53. PubMed ID: 20383716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-induced intestinal hyperemia is mediated by nitric oxide.
    Matheson PJ; Wilson MA; Spain DA; Harris PD; Anderson GL; Garrison RN
    J Surg Res; 1997 Oct; 72(2):146-54. PubMed ID: 9356236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular signalling pathways mediating dilation of porcine pial arterioles to adenosine A₂A receptor activation.
    Hein TW; Xu W; Ren Y; Kuo L
    Cardiovasc Res; 2013 Jul; 99(1):156-63. PubMed ID: 23539502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of P2 receptor subtypes producing dilation in rat intracerebral arterioles.
    Horiuchi T; Dietrich HH; Hongo K; Dacey RG
    Stroke; 2003 Jun; 34(6):1473-8. PubMed ID: 12730558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of endothelial nitric oxide and smooth muscle potassium channels in cerebral arteriolar dilation in response to acidosis.
    Horiuchi T; Dietrich HH; Hongo K; Goto T; Dacey RG
    Stroke; 2002 Mar; 33(3):844-9. PubMed ID: 11872913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP inhibits pump activity of lymph vessels via adenosine A1 receptor-mediated involvement of NO- and ATP-sensitive K+ channels.
    Kousai A; Mizuno R; Ikomi F; Ohhashi T
    Am J Physiol Heart Circ Physiol; 2004 Dec; 287(6):H2585-97. PubMed ID: 15308482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of NO and K(+)(ATP) channels in adenosine-induced vasodilation on in vivo canine subendocardial arterioles.
    Yada T; Hiramatsu O; Tachibana H; Toyota E; Kajiya F
    Am J Physiol; 1999 Nov; 277(5):H1931-9. PubMed ID: 10564149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A1 adenosine receptor negatively modulates coronary reactive hyperemia via counteracting A2A-mediated H2O2 production and KATP opening in isolated mouse hearts.
    Zhou X; Teng B; Tilley S; Mustafa SJ
    Am J Physiol Heart Circ Physiol; 2013 Dec; 305(11):H1668-79. PubMed ID: 24043252
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.
    Hein TW; Kuo L
    Circ Res; 1999 Oct; 85(7):634-42. PubMed ID: 10506488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation.
    Dick GM; Bratz IN; Borbouse L; Payne GA; Dincer UD; Knudson JD; Rogers PA; Tune JD
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2371-81. PubMed ID: 18375717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. K
    Schemke S; de Wit C
    Pflugers Arch; 2021 Nov; 473(11):1795-1806. PubMed ID: 34386847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: role of nitric oxide and ATP-sensitive potassium channels.
    Hein TW; Belardinelli L; Kuo L
    J Pharmacol Exp Ther; 1999 Nov; 291(2):655-64. PubMed ID: 10525085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NO-mediated activation of K
    Fujii N; McGarr GW; Kenny GP; Amano T; Honda Y; Kondo N; Nishiyasu T
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R390-R398. PubMed ID: 31913684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pial microvascular responses to transient bilateral common carotid artery occlusion: effects of hypertonic glycerol.
    Lapi D; Marchiafava PL; Colantuoni A
    J Vasc Res; 2008; 45(2):89-102. PubMed ID: 17934320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic fibroblast growth factor and heparin influence coronary arteriolar tone by causing endothelium-dependent dilation.
    Tiefenbacher CP; Chilian WM
    Cardiovasc Res; 1997 May; 34(2):411-7. PubMed ID: 9205556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.