BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

367 related articles for article (PubMed ID: 20452692)

  • 1. Fungal polyketide azaphilone pigments as future natural food colorants?
    Mapari SA; Thrane U; Meyer AS
    Trends Biotechnol; 2010 Jun; 28(6):300-7. PubMed ID: 20452692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring fungal biodiversity for the production of water-soluble pigments as potential natural food colorants.
    Mapari SA; Nielsen KF; Larsen TO; Frisvad JC; Meyer AS; Thrane U
    Curr Opin Biotechnol; 2005 Apr; 16(2):231-8. PubMed ID: 15831392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colorimetric characterization for comparative analysis of fungal pigments and natural food colorants.
    Mapari SA; Meyer AS; Thrane U
    J Agric Food Chem; 2006 Sep; 54(19):7027-35. PubMed ID: 16968059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computerized screening for novel producers of Monascus-like food pigments in Penicillium species.
    Mapari SA; Hansen ME; Meyer AS; Thrane U
    J Agric Food Chem; 2008 Nov; 56(21):9981-9. PubMed ID: 18841978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filamentous fungi are large-scale producers of pigments and colorants for the food industry.
    Dufossé L; Fouillaud M; Caro Y; Mapari SA; Sutthiwong N
    Curr Opin Biotechnol; 2014 Apr; 26():56-61. PubMed ID: 24679259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potentially safe promising fungal cell factories for the production of polyketide natural food colorants using chemotaxonomic rationale.
    Mapari SA; Meyer AS; Thrane U; Frisvad JC
    Microb Cell Fact; 2009 Apr; 8():24. PubMed ID: 19397825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photostability of natural orange-red and yellow fungal pigments in liquid food model systems.
    Mapari SA; Meyer AS; Thrane U
    J Agric Food Chem; 2009 Jul; 57(14):6253-61. PubMed ID: 19534525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic fate of food colorants.
    Parkinson TM; Brown JP
    Annu Rev Nutr; 1981; 1():175-205. PubMed ID: 6764715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Natural colorants from filamentous fungi.
    Torres FA; Zaccarim BR; de Lencastre Novaes LC; Jozala AF; Dos Santos CA; Teixeira MF; Santos-Ebinuma VC
    Appl Microbiol Biotechnol; 2016 Mar; 100(6):2511-21. PubMed ID: 26780357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Colorants: Food Colorants from Natural Sources.
    Sigurdson GT; Tang P; Giusti MM
    Annu Rev Food Sci Technol; 2017 Feb; 8():261-280. PubMed ID: 28125346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective Study of Microbial Colorants under the Focus of Patent Documents.
    Gonçalves BRP; Machado BAS; Hanna SA; Umsza-Guez MA
    Recent Pat Biotechnol; 2020; 14(3):184-193. PubMed ID: 31577212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Study on the production of citrinin by Monascus strains used in food industry].
    Li F; Xu G; Li Y; Chen Y
    Wei Sheng Yan Jiu; 2003 Nov; 32(6):602-5. PubMed ID: 14963915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascomycota as a source of natural colorants.
    de Oliveira LA; Segundo WOPF; de Souza ÉS; Peres EG; Koolen HHF; de Souza JVB
    Braz J Microbiol; 2022 Sep; 53(3):1199-1220. PubMed ID: 35616785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Azaphilone alkaloids: prospective source of natural food pigments.
    Liu L; Wang Z
    Appl Microbiol Biotechnol; 2022 Jan; 106(2):469-484. PubMed ID: 34921328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monascus rice products.
    Wang TH; Lin TF
    Adv Food Nutr Res; 2007; 53():123-59. PubMed ID: 17900498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A reductase gene mppE controls yellow component production in azaphilone polyketide pathway of Monascus.
    Balakrishnan B; Park SH; Kwon HJ
    Biotechnol Lett; 2017 Jan; 39(1):163-169. PubMed ID: 27714556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential fungal fermentation-biotransformation process to produce a red pigment from sclerotiorin.
    Corrêia Gomes D; Takahashi JA
    Food Chem; 2016 Nov; 210():355-61. PubMed ID: 27211658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pigments and citrinin biosynthesis by fungi belonging to genus Monascus.
    Pisareva E; Savov V; Kujumdzieva A
    Z Naturforsch C J Biosci; 2005; 60(1-2):116-20. PubMed ID: 15787255
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Delineating citrinin biosynthesis: Ctn-ORF3 dioxygenase-mediated multi-step methyl oxidation precedes a reduction-mediated pyran ring cyclization.
    Balakrishnan B; Chandran R; Park SH; Kwon HJ
    Bioorg Med Chem Lett; 2016 Jan; 26(2):392-396. PubMed ID: 26707397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production and biological activities of yellow pigments from Monascus fungi.
    Chen G; Wu Z
    World J Microbiol Biotechnol; 2016 Aug; 32(8):136. PubMed ID: 27357404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.