BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 20452730)

  • 1. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents.
    Machado MD; Soares EV; Soares HM
    J Hazard Mater; 2010 Aug; 180(1-3):347-53. PubMed ID: 20452730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process.
    Machado MD; Santos MS; Gouveia C; Soares HM; Soares EV
    Bioresour Technol; 2008 May; 99(7):2107-15. PubMed ID: 17631999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of heavy metals using a brewer's yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass.
    Machado MD; Janssens S; Soares HM; Soares EV
    J Appl Microbiol; 2009 Jun; 106(6):1792-804. PubMed ID: 19245404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption of heavy metals by Saccharomyces cerevisiae: a review.
    Wang J; Chen C
    Biotechnol Adv; 2006; 24(5):427-51. PubMed ID: 16737792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal bioremediation through growing cells.
    Malik A
    Environ Int; 2004 Apr; 30(2):261-78. PubMed ID: 14749114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review.
    Soares EV; Soares HM
    Environ Sci Pollut Res Int; 2012 May; 19(4):1066-83. PubMed ID: 22139299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Viability and release of complexing compounds during accumulation of heavy metals by a brewer's yeast.
    Soares EV; Duarte AP; Boaventura RA; Soares HM
    Appl Microbiol Biotechnol; 2002 May; 58(6):836-41. PubMed ID: 12021806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Removing heavy metals from synthetic effluents using "kamikaze" Saccharomyces cerevisiae cells.
    Ruta L; Paraschivescu C; Matache M; Avramescu S; Farcasanu IC
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):763-71. PubMed ID: 19795117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies.
    Akhtar N; Iqbal J; Iqbal M
    J Hazard Mater; 2004 Apr; 108(1-2):85-94. PubMed ID: 15081166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents.
    Vijayaraghavan K; Palanivelu K; Velan M
    J Hazard Mater; 2005 Mar; 119(1-3):251-4. PubMed ID: 15752873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced biosorption of nickel(II) ions by silica-gel-immobilized waste biomass: biosorption characteristics in batch and dynamic flow mode.
    Akar T; Kaynak Z; Ulusoy S; Yuvaci D; Ozsari G; Akar ST
    J Hazard Mater; 2009 Apr; 163(2-3):1134-41. PubMed ID: 18755542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents.
    Machado MD; Soares EV; Soares HMVM
    J Hazard Mater; 2010 Dec; 184(1-3):357-363. PubMed ID: 20832935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial biomass: an economical alternative for removal of heavy metals from waste water.
    Gupta R; Mohapatra H
    Indian J Exp Biol; 2003 Sep; 41(9):945-66. PubMed ID: 15242288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process.
    Machado MD; Soares EV; Soares HM
    Environ Sci Pollut Res Int; 2011 Sep; 18(8):1279-85. PubMed ID: 21399916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of chromium from electroplating industry effluents by ion exchange resins.
    Cavaco SA; Fernandes S; Quina MM; Ferreira LM
    J Hazard Mater; 2007 Jun; 144(3):634-8. PubMed ID: 17336455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacterial biosorbent for removing and recovering copper from electroplating effluents.
    Lo W; Chua H; Wong MF; Yu P
    Water Sci Technol; 2003; 47(1):251-6. PubMed ID: 12578202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of speciation of metals in an industrial sludge and evaluation of metal chelators for their removal.
    Nair A; Juwarkar AA; Devotta S
    J Hazard Mater; 2008 Apr; 152(2):545-53. PubMed ID: 17768006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper and nickel speciation in mine effluents by combination of two independent techniques.
    Chakraborty P; Zhao J; Chakrabarti CL
    Anal Chim Acta; 2009 Mar; 636(1):70-6. PubMed ID: 19231358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry.
    Soares EV; Soares HM
    Appl Microbiol Biotechnol; 2013 Aug; 97(15):6667-75. PubMed ID: 23824444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.