These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 20453004)

  • 1. Discover regulatory DNA elements using chromatin signatures and artificial neural network.
    Firpi HA; Ucar D; Tan K
    Bioinformatics; 2010 Jul; 26(13):1579-86. PubMed ID: 20453004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DELTA: A Distal Enhancer Locating Tool Based on AdaBoost Algorithm and Shape Features of Chromatin Modifications.
    Lu Y; Qu W; Shan G; Zhang C
    PLoS One; 2015; 10(6):e0130622. PubMed ID: 26091399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finding combinatorial histone code by semi-supervised biclustering.
    Teng L; Tan K
    BMC Genomics; 2012 Jul; 13():301. PubMed ID: 22759587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HebbPlot: an intelligent tool for learning and visualizing chromatin mark signatures.
    Girgis HZ; Velasco A; Reyes ZE
    BMC Bioinformatics; 2018 Sep; 19(1):310. PubMed ID: 30176808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of regulatory elements in mammalian genomes using chromatin signatures.
    Won KJ; Chepelev I; Ren B; Wang W
    BMC Bioinformatics; 2008 Dec; 9():547. PubMed ID: 19094206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancer prediction with histone modification marks using a hybrid neural network model.
    Lim A; Lim S; Kim S
    Methods; 2019 Aug; 166():48-56. PubMed ID: 30905748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chromatin signature discovery via histone modification profile alignments.
    Wang J; Lunyak VV; Jordan IK
    Nucleic Acids Res; 2012 Nov; 40(21):10642-56. PubMed ID: 22989711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.
    Chen S; Gan M; Lv H; Jiang R
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Opening up the blackbox: an interpretable deep neural network-based classifier for cell-type specific enhancer predictions.
    Kim SG; Theera-Ampornpunt N; Fang CH; Harwani M; Grama A; Chaterji S
    BMC Syst Biol; 2016 Aug; 10 Suppl 2(Suppl 2):54. PubMed ID: 27490187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ChromaSig: a probabilistic approach to finding common chromatin signatures in the human genome.
    Hon G; Ren B; Wang W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000201. PubMed ID: 18927605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. hiHMM: Bayesian non-parametric joint inference of chromatin state maps.
    Sohn KA; Ho JW; Djordjevic D; Jeong HH; Park PJ; Kim JH
    Bioinformatics; 2015 Jul; 31(13):2066-74. PubMed ID: 25725496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ALTRE: workflow for defining ALTered Regulatory Elements using chromatin accessibility data.
    Baskin E; Farouni R; Mathé EA
    Bioinformatics; 2017 Mar; 33(5):740-742. PubMed ID: 28011773
    [TBL] [Abstract][Full Text] [Related]  

  • 15. seqgra: principled selection of neural network architectures for genomics prediction tasks.
    Krismer K; Hammelman J; Gifford DK
    Bioinformatics; 2022 Apr; 38(9):2381-2388. PubMed ID: 35191481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combinatorial chromatin modification patterns in the human genome revealed by subspace clustering.
    Ucar D; Hu Q; Tan K
    Nucleic Acids Res; 2011 May; 39(10):4063-75. PubMed ID: 21266477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An integrative approach to understanding the combinatorial histone code at functional elements.
    Lai WK; Buck MJ
    Bioinformatics; 2013 Sep; 29(18):2231-7. PubMed ID: 23821650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated approach to identifying cis-regulatory modules in the human genome.
    Won KJ; Agarwal S; Shen L; Shoemaker R; Ren B; Wang W
    PLoS One; 2009; 4(5):e5501. PubMed ID: 19434238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histone modification profiles are predictive for tissue/cell-type specific expression of both protein-coding and microRNA genes.
    Zhang Z; Zhang MQ
    BMC Bioinformatics; 2011 May; 12():155. PubMed ID: 21569556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating regulatory DNA sequence and gene expression to predict genome-wide chromatin accessibility across cellular contexts.
    Nair S; Kim DS; Perricone J; Kundaje A
    Bioinformatics; 2019 Jul; 35(14):i108-i116. PubMed ID: 31510655
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.