BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20453279)

  • 1. Direct probe of heterojunction effects upon photoconductive properties of TiO2 nanotubes fabricated by atomic layer deposition.
    Chang YH; Liu CM; Tseng YC; Chen C; Chen CC; Cheng HE
    Nanotechnology; 2010 Jun; 21(22):225602. PubMed ID: 20453279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The heterojunction effects of TiO2 nanotubes fabricated by atomic layer deposition on photocarrier transportation direction.
    Chang YH; Liu CM; Chen C; Cheng HE
    Nanoscale Res Lett; 2012 Apr; 7(1):231. PubMed ID: 22525197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays.
    Park WY; Kim GH; Seok JY; Kim KM; Song SJ; Lee MH; Hwang CS
    Nanotechnology; 2010 May; 21(19):195201. PubMed ID: 20400821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly ordered freestanding titanium oxide nanotube arrays using Si-containing block copolymer lithography and atomic layer deposition.
    Ku SJ; Jo GC; Bak CH; Kim SM; Shin YR; Kim KH; Kwon SH; Kim JB
    Nanotechnology; 2013 Mar; 24(8):085301. PubMed ID: 23376893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.
    Chang YH; Liu CM; Cheng HE; Chen C
    ACS Appl Mater Interfaces; 2013 May; 5(9):3549-55. PubMed ID: 23621320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of water in the atomic layer deposition of TiO(2) on SiO(2).
    Gu W; Tripp CP
    Langmuir; 2005 Jan; 21(1):211-6. PubMed ID: 15620305
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ru nanostructure fabrication using an anodic aluminum oxide nanotemplate and highly conformal Ru atomic layer deposition.
    Kim WH; Park SJ; Son JY; Kim H
    Nanotechnology; 2008 Jan; 19(4):045302. PubMed ID: 21817499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced solar water-splitting efficiency using core/sheath heterostructure CdS/TiO2 nanotube arrays.
    Yin Y; Jin Z; Hou F
    Nanotechnology; 2007 Dec; 18(49):495608. PubMed ID: 20442481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium-tin-oxide nanowire arrays and ITO/TiO2 core-shell nanowire arrays by electrophoretic deposition.
    Wang HW; Ting CF; Hung MK; Chiou CH; Liu YL; Liu Z; Ratinac KR; Ringer SP
    Nanotechnology; 2009 Feb; 20(5):055601. PubMed ID: 19417348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bendable Single Crystal Silicon Nanomembrane Thin Film Transistors with Improved Low-Temperature Processed Metal/n-Si Ohmic Contact by Inserting TiO₂ Interlayer.
    Zhang J; Zhang Y; Chen D; Zhu W; Xi H; Zhang J; Zhang C; Hao Y
    Nanomaterials (Basel); 2018 Dec; 8(12):. PubMed ID: 30558367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin of the bottlenecks in preparing anodized aluminum oxide (AAO) templates on ITO glass.
    Foong TR; Sellinger A; Hu X
    ACS Nano; 2008 Nov; 2(11):2250-6. PubMed ID: 19206390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method to protect charge recombination in the back-contact dye-sensitized solar cell.
    Yoo B; Kim KJ; Lee DK; Kim K; Ko MJ; Kim YH; Kim WM; Park NG
    Opt Express; 2010 Sep; 18 Suppl 3():A395-402. PubMed ID: 21165069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TEM-based metrology for HfO2 layers and nanotubes formed in anodic aluminum oxide nanopore structures.
    Perez I; Robertson E; Banerjee P; Henn-Lecordier L; Son SJ; Lee SB; Rubloff GW
    Small; 2008 Aug; 4(8):1223-32. PubMed ID: 18623293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled hybrid polymer-TiO2 nanotube array heterojunction solar cells.
    Shankar K; Mor GK; Prakasam HE; Varghese OK; Grimes CA
    Langmuir; 2007 Nov; 23(24):12445-9. PubMed ID: 17958387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophoretic deposition of uniformly distributed TiO2 nanoparticles using an anodic aluminum oxide template for efficient photolysis.
    Wang GJ; Chou SW
    Nanotechnology; 2010 Mar; 21(11):115206. PubMed ID: 20179332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocurrent generation in heterostructured ultrathin films fabricated by layer-by-layer deposition of polyelectrolytes bearing tris(2,2'-bipyridine)ruthenium(II) and ferrocene moieties.
    Fushimi T; Oda A; Ohkita H; Ito S
    Langmuir; 2005 Feb; 21(4):1584-9. PubMed ID: 15697311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transparent, well-aligned TiO(2) nanotube arrays with controllable dimensions on glass substrates for photocatalytic applications.
    Tan LK; Kumar MK; An WW; Gao H
    ACS Appl Mater Interfaces; 2010 Feb; 2(2):498-503. PubMed ID: 20356197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells.
    Kuang D; Brillet J; Chen P; Takata M; Uchida S; Miura H; Sumioka K; Zakeeruddin SM; Grätzel M
    ACS Nano; 2008 Jun; 2(6):1113-6. PubMed ID: 19206327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The selective fabrication of large-area highly ordered TiO2 nanorod and nanotube arrays on conductive transparent substrates via sol-gel electrophoresis.
    Ren X; Gershon T; Iza DC; Muñoz-Rojas D; Musselman K; Macmanus-Driscoll JL
    Nanotechnology; 2009 Sep; 20(36):365604. PubMed ID: 19687541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ordered titanium dioxide nanotubes filled with photoluminescent surfactant-free silicon nanocrystals.
    Svrcek V; Turkevych I; Hara K; Kondo M
    Nanotechnology; 2010 May; 21(21):215203. PubMed ID: 20431204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.