BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 20453279)

  • 21. Barrier layer non-uniformity effects in anodized aluminum oxide nanopores on ITO substrates.
    Liu P; Singh VP; Rajaputra S
    Nanotechnology; 2010 Mar; 21(11):115303. PubMed ID: 20173243
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of nested coaxial multiple-walled nanotubes by atomic layer deposition.
    Gu D; Baumgart H; Abdel-Fattah TM; Namkoong G
    ACS Nano; 2010 Feb; 4(2):753-8. PubMed ID: 20085347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-standing crystalline TiO2 nanotubes/CNTs heterojunction membrane: synthesis and characterization.
    Hesabi ZR; Allam NK; Dahmen K; Garmestani H; A El-Sayed M
    ACS Appl Mater Interfaces; 2011 Apr; 3(4):952-5. PubMed ID: 21425842
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fibrous CdS/CdSe quantum dot co-sensitized solar cells based on ordered TiO2 nanotube arrays.
    Huang S; Zhang Q; Huang X; Guo X; Deng M; Li D; Luo Y; Shen Q; Toyoda T; Meng Q
    Nanotechnology; 2010 Sep; 21(37):375201. PubMed ID: 20714055
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate.
    Crawford GA; Chawla N; Das K; Bose S; Bandyopadhyay A
    Acta Biomater; 2007 May; 3(3):359-67. PubMed ID: 17067860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays.
    Kafi AK; Wu G; Chen A
    Biosens Bioelectron; 2008 Dec; 24(4):566-71. PubMed ID: 18640021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of TiO2 nanotubes by atomic layer deposition and their photocatalytic and photoelectrochemical applications.
    Wang CC; Kei CC; Perng TP
    Nanotechnology; 2011 Sep; 22(36):365702. PubMed ID: 21836325
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and photoelectrocatalytic activity of ZnO nanorods embedded in highly ordered TiO(2) nanotube arrays electrode for azo dye degradation.
    Zhang Z; Yuan Y; Liang L; Cheng Y; Shi G; Jin L
    J Hazard Mater; 2008 Oct; 158(2-3):517-22. PubMed ID: 18440136
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A facile route to n-type TiO(2)-nanotube/p-type boron-doped-diamond heterojunction for highly efficient photocatalysts.
    Yuan J; Li H; Gao S; Lin Y; Li H
    Chem Commun (Camb); 2010 May; 46(18):3119-21. PubMed ID: 20424751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and growth mechanism of multilayer TiO2 nanotube arrays.
    Guan D; Wang Y
    Nanoscale; 2012 Apr; 4(9):2968-77. PubMed ID: 22460605
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchically macro-/mesoporous Ti-Si oxides photonic crystal with highly efficient photocatalytic capability.
    Liu J; Li M; Wang J; Song Y; Jiang L; Murakami T; Fujishima A
    Environ Sci Technol; 2009 Dec; 43(24):9425-31. PubMed ID: 20000539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tailored TiO2-SrTiO3 heterostructure nanotube arrays for improved photoelectrochemical performance.
    Zhang J; Bang JH; Tang C; Kamat PV
    ACS Nano; 2010 Jan; 4(1):387-95. PubMed ID: 20000756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An efficient Si light-emitting diode based on an n- ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterostructure.
    Sun E; Su FH; Shih YT; Tsai HL; Chen CH; Wu MK; Yang JR; Chen MJ
    Nanotechnology; 2009 Nov; 20(44):445202. PubMed ID: 19801782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film.
    Kim YJ; Lee YH; Lee MH; Kim HJ; Pan JH; Lim GI; Choi YS; Kim K; Park NG; Lee C; Lee WI
    Langmuir; 2008 Nov; 24(22):13225-30. PubMed ID: 18922027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong and reversible modulation of carbon nanotube-silicon heterojunction solar cells by an interfacial oxide layer.
    Jia Y; Cao A; Kang F; Li P; Gui X; Zhang L; Shi E; Wei J; Wang K; Zhu H; Wu D
    Phys Chem Chem Phys; 2012 Jun; 14(23):8391-6. PubMed ID: 22573091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles.
    Long R; Dai Y; Meng G; Huang B
    Phys Chem Chem Phys; 2009 Oct; 11(37):8165-72. PubMed ID: 19756272
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Schottky barrier mediated single-polarity resistive switching in Pt layer-included TiO(x) memory device.
    Chung YL; Lai PY; Chen YC; Chen JS
    ACS Appl Mater Interfaces; 2011 Jun; 3(6):1918-24. PubMed ID: 21574659
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrical and optical properties of an organic semiconductor based on polyaniline prepared by emulsion polymerization and fabrication of Ag/polyaniline/n-Si Schottky diode.
    Yakuphanoglu F; Basaran E; Senkal BF; Sezer E
    J Phys Chem B; 2006 Aug; 110(34):16908-13. PubMed ID: 16927980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of atomic layer deposition coatings on the surface structure of anodic aluminum oxide membranes.
    Xiong G; Elam JW; Feng H; Han CY; Wang HH; Iton LE; Curtiss LA; Pellin MJ; Kung M; Kung H; Stair PC
    J Phys Chem B; 2005 Jul; 109(29):14059-63. PubMed ID: 16852765
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hydroxyapatite growth on anodic TiO2 nanotubes.
    Tsuchiya H; Macak JM; Müller L; Kunze J; Müller F; Greil P; Virtanen S; Schmuki P
    J Biomed Mater Res A; 2006 Jun; 77(3):534-41. PubMed ID: 16489589
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.