BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

295 related articles for article (PubMed ID: 20453285)

  • 1. Numerical simulations for a quantitative analysis of AFM electrostatic nanopatterning on PMMA by Kelvin force microscopy.
    Palleau E; Ressier L; Borowik Ł; Mélin T
    Nanotechnology; 2010 Jun; 21(22):225706. PubMed ID: 20453285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic nanopatterning of PMMA by AFM charge writing for directed nano-assembly.
    Ressier L; Le Nader V
    Nanotechnology; 2008 Apr; 19(13):135301. PubMed ID: 19636140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantification of the electrostatic forces involved in the directed assembly of colloidal nanoparticles by AFM nanoxerography.
    Palleau E; Sangeetha NM; Ressier L
    Nanotechnology; 2011 Aug; 22(32):325603. PubMed ID: 21772072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tip-to-sample distance dependence of an electrostatic force in KFM measurements.
    Takahashi T; Ono S
    Ultramicroscopy; 2004 Aug; 100(3-4):287-92. PubMed ID: 15231321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct probing of solvent-induced charge degradation in polypropylene electret fibres via electrostatic force microscopy.
    Kim J; Jasper W; Hinestroza J
    J Microsc; 2007 Jan; 225(Pt 1):72-9. PubMed ID: 17286696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AFM force mapping for characterizing patterns of electrostatic charges on SiO2 electrets.
    Zhang Y; Zhao D; Tan X; Cao T; Zhang X
    Langmuir; 2010 Jul; 26(14):11958-62. PubMed ID: 20476727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanoscale quantitative measurement of the potential of charged nanostructures by electrostatic and Kelvin probe force microscopy: unraveling electronic processes in complex materials.
    Liscio A; Palermo V; Samorì P
    Acc Chem Res; 2010 Apr; 43(4):541-50. PubMed ID: 20058907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feed-forward compensation of surface potential in atomic force microscopy.
    Ziegler D; Naujoks N; Stemmer A
    Rev Sci Instrum; 2008 Jun; 79(6):063704. PubMed ID: 18601410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of surface topography on Kelvin probe force microscopy.
    Sadewasser S; Leendertz C; Streicher F; Lux-Steiner MCh
    Nanotechnology; 2009 Dec; 20(50):505503. PubMed ID: 19934483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of effective tip geometries in Kelvin probe force microscopy on thin insulating films on metals.
    Glatzel T; Zimmerli L; Koch S; Such B; Kawai S; Meyer E
    Nanotechnology; 2009 Jul; 20(26):264016. PubMed ID: 19509456
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of ionic strength and surface charge on protein adsorption at PEGylated surfaces.
    Pasche S; Vörös J; Griesser HJ; Spencer ND; Textor M
    J Phys Chem B; 2005 Sep; 109(37):17545-52. PubMed ID: 16853244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topography and work function measurements of thin MgO(001) films on Ag(001) by nc-AFM and KPFM.
    Bieletzki M; Hynninen T; Soini TM; Pivetta M; Henry CR; Foster AS; Esch F; Barth C; Heiz U
    Phys Chem Chem Phys; 2010 Apr; 12(13):3203-9. PubMed ID: 20237710
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kelvin probe force microscopy for conducting nanobits of NiO thin films.
    Son JY; Shin YH; Kim H; Cho JH; Jang H
    Nanotechnology; 2010 May; 21(21):215704. PubMed ID: 20431198
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(L-lysine) adlayers on niobia surfaces.
    Pasche S; Textor M; Meagher L; Spencer ND; Griesser HJ
    Langmuir; 2005 Jul; 21(14):6508-20. PubMed ID: 15982060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface chemical properties of nanoscale domains on UV-treated polystyrene-poly(methyl methacrylate) diblock copolymer films studied using scanning force microscopy.
    Ibrahim S; Ito T
    Langmuir; 2010 Feb; 26(3):2119-23. PubMed ID: 19928977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale characterization of the dielectric charging phenomenon in PECVD silicon nitride thin films with various interfacial structures based on Kelvin probe force microscopy.
    Zaghloul U; Papaioannou GJ; Wang H; Bhushan B; Coccetti F; Pons P; Plana R
    Nanotechnology; 2011 May; 22(20):205708. PubMed ID: 21444948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphology and self-arraying of SDS and DTAB dried on mica surface.
    Bernardes JS; Rezende CA; Galembeck F
    Langmuir; 2010 Jun; 26(11):7824-32. PubMed ID: 20158224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifrequency atomic force microscopy: compositional imaging with electrostatic force measurements.
    Magonov S; Alexander J
    Microsc Microanal; 2011 Aug; 17(4):587-97. PubMed ID: 21771386
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High spatial resolution Kelvin probe force microscopy with coaxial probes.
    Brown KA; Satzinger KJ; Westervelt RM
    Nanotechnology; 2012 Mar; 23(11):115703. PubMed ID: 22369870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.